Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists observe infectious prion proteins invade and move within brain cells

25.05.2005


Scientists for the first time have watched agents of brain-wasting diseases, called transmissible spongiform encephalopathies (TSE), as they invade a nerve cell and then travel along wire-like circuits to points of contact with other cells. These findings will help scientists better understand TSE diseases and may lead to ways to prevent or minimize their effects. TSE, or prion, diseases include scrapie in sheep and goats; chronic wasting disease in deer and elk; mad cow disease in cattle; and Creutzfeldt-Jacob disease in humans.

Under the direction of Byron Caughey, Ph.D., at the Rocky Mountain Laboratories (RML), and Marco Prado, Ph.D., at the University of Minas Gerais in Belo Horizonte, Brazil, the team performed the research in laboratory cultures using a rodent-adapted form of scrapie protein and cells taken from the central nervous system of mouse and hamster brains. The proteins were first "branded" with fluorescent dyes so they could be easily tracked.

The work also revealed that a similar trafficking process might occur with the key plaque-forming protein in Alzheimer’s disease, which is not a TSE but a different type of degenerative brain disease, according to Gerald Baron, Ph.D., one of the lead RML researchers. RML, located in Hamilton, MT, is part of the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health. The new report appears in the May 25 issue of The Journal of Neuroscience.



"These findings offer intriguing leads toward developing therapies to stop the spread of TSE and possibly other degenerative brain diseases," says NIAID Director Dr. Anthony Fauci. "Potentially, it may be possible to block the pathways that prions use to invade cells, their exit to other cells or their replication within the cells."

Those are precisely some of the next experiments the RML group is pursuing, along with trying to move the fluorescent tracking method from laboratory cell cultures to live mice and hamsters. Along with Drs. Caughey, Prado and Baron, other key researchers involved in the project included Kil Sun Lee, Ph.D., RML, and former RML employee Ana Cristina Magalhães, Ph.D., also from the Federal University of Minas Gerais.

Dr. Baron explains that throughout his seven years at RML, he and others have contemplated how to use fluorescent tracking to learn more about TSEs, but they struggled to develop an effective method to do so.

"When I started working on TSEs, I thought about them as being similar to intracellular bacterial pathogens--something that replicates within an animal or human host cell," says Dr. Baron. "I wanted to know how such a pathogen binds to the host cell, and how it enters, replicates and spreads to other cells."

Dr. Baron says researchers have tracked infectious prion protein moving through other parts of animal bodies up to the brain, but no one had ever tracked the protein movement within animal brain cells. One of the most difficult aspects of the experiment, he says, was finding a way to fluorescently tag the TSE prion proteins without altering them--while still allowing researchers to identify the prions as they penetrated the cells and spread within the long projections that nerve cells develop to send signals to other nerve cells.

"This was difficult from a technical aspect because the scrapie pathogen is largely a corrupted form of a host cell protein," Dr. Baron said. "It can be hard to detect the corrupted prion protein in living infected cells and distinguish it from its normal counterpart."

He explains that once researchers learned how to mark the prion proteins, they added them to a culture of nerve cells and then began watching and taking photo images with a confocal microscope. Confocal microscopy uses laser light to scan many thin sections of a fluorescent sample, resulting in a clean three-dimensional image. The painstaking job of analyzing and deciphering about 1,000 different images primarily belonged to Dr. Magalhães--who filled a file cabinet drawer with CDs containing microscopic images. The effort resulted in striking photos that, when put into a video format, show prion protein moving within cells, then along narrow cellular projections called neurites and ultimately into close proximity with adjacent cells.

Other areas the research group plans to explore include

  • Exactly where within nerve cells does scrapie infection occur, and how does this happen?
  • How and why do large masses of infectious prion protein attach to host cells and become broken into smaller units so that they can invade the cell interior?
  • What types of chemical messages are sent between neurites from one cell to another that allow infectious prions to transfer between cells?
  • What happens to the infectious prion protein once it is transferred to another cell?
  • How do the many different possible pathways that lead into cells determine what happens to prion protein; some pathways could lead to digestion by the cell, others lead to transfer--and presumably infection--in adjacent cells.

"This has been pretty amazing--certainly a new approach for our field," Dr. Baron says.

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>