Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny bundles seek and destroy breast cancer cells

24.05.2005


Penn State College of Medicine study shows for the first time in an animal model that ceramide, a naturally occurring substance that prevents the growth of cells, can be administered through the blood stream to target and kill cancer cells.

"Ceramide is the substance that accumulates in cancer tissues and helps to kill cancer cells when patients undergo chemotherapy and radiation," said Mark Kester, Ph.D., professor of pharmacology, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center. "By boosting the amount of ceramide through an injection in the bloodstream, our study in mice suggests that we can provide a stronger cancer-killing therapy without additional side effects."

This study titled "Systemic Delivery of Liposomal Short-Chain Ceramide Limits Solid Tumor Growth in Murine Models of Breast Adenocarcinoma" was published in the May issue of Clinical Cancer Research, a journal of the American Association for Cancer Research.



Administering extra ceramide is not as easy as it seems. Injected directly into the bloodstream, ceramide is toxic. But Kester applied knowledge gained from previous laboratory studies in nanotechnology and encapsulated the ceramide in tiny bundles called liposomes. "The major problem with ceramide is that it is a lipid and therefore is not soluble in the systemic circulation," Kester said. "Packaging ceramide in our nano liposome capsules allows them to travel through the bloodstream without causing toxicity and release the ceramide in the tumor."

Although the mechanism remains unknown, ceramide is inherently attracted to tumor cells. The liposome-encased ceramide travels through the bloodstream to the tumor where it enters the tumor cells through the tumor’s leaky vasculature. The ceramide disrupts the mitochondria, which act as the energy producer for the cell. This causes apoptosis, or cell death. The ceramide also reduces the vascular network that feeds the tumor. In this study in mice, the ceramide bundles targeted and destroyed only breast cancer cells, sparing the surrounding healthy tissue.

Kester and his team first tested the ceramide-filled liposomes in a culture of breast cancer cells. The administration of ceramide reduced by more than 50 percent the number of breast cancer cells. Additional cell culture studies showed that ceramide accumulated in the mitochondria of the breast cancer cells supporting earlier laboratory studies that ceramide interferes with the structure of the cell and causes tumor death.

In a mouse model of breast tumors, the team administered liposome-encased ceramide every other day via intravenous injection. After 21 days, the mice treated with the liposome-encased ceramide had a six-fold lower tumor volume than the mice treated with "empty" liposomes. The weight of animals treated with ceramide did not vary significantly from the mice treated with empty liposomes signifying that the ceramide was not toxic (weight would have been lower with toxicity). When the tumors were examined, those treated with ceramide showed a 20-fold increase in cellular apoptosis and a 40 percent decrease in cellular proliferation, or growth, compared to the control group.

"Although we’ve shown that ceramide has an effect on breast tumor cells in mice, breast cancer cells in humans may eventually resist the treatment, suggesting that ceramide should be used in combination with more traditional cancer treatments as a treatment booster," Kester said. "Our next step is to explore how additional chemotherapeutic agents could be incorporated into the liposomes for a more lasting effect."

Other study team members were: Thomas C. Stover, Ph.D., Arati Sharma, Ph.D., Department of Pharmacology, and Gavin P. Robertson, Ph.D., Departments of Pharmacology, Pathology, and Dermatology, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center. All research methods were approved by the Animal Care and Use Committee of Penn State College of Medicine. This study was supported by a grant from the National Institutes of Health.

Valerie Gliem | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>