Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny bundles seek and destroy breast cancer cells

24.05.2005


Penn State College of Medicine study shows for the first time in an animal model that ceramide, a naturally occurring substance that prevents the growth of cells, can be administered through the blood stream to target and kill cancer cells.

"Ceramide is the substance that accumulates in cancer tissues and helps to kill cancer cells when patients undergo chemotherapy and radiation," said Mark Kester, Ph.D., professor of pharmacology, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center. "By boosting the amount of ceramide through an injection in the bloodstream, our study in mice suggests that we can provide a stronger cancer-killing therapy without additional side effects."

This study titled "Systemic Delivery of Liposomal Short-Chain Ceramide Limits Solid Tumor Growth in Murine Models of Breast Adenocarcinoma" was published in the May issue of Clinical Cancer Research, a journal of the American Association for Cancer Research.



Administering extra ceramide is not as easy as it seems. Injected directly into the bloodstream, ceramide is toxic. But Kester applied knowledge gained from previous laboratory studies in nanotechnology and encapsulated the ceramide in tiny bundles called liposomes. "The major problem with ceramide is that it is a lipid and therefore is not soluble in the systemic circulation," Kester said. "Packaging ceramide in our nano liposome capsules allows them to travel through the bloodstream without causing toxicity and release the ceramide in the tumor."

Although the mechanism remains unknown, ceramide is inherently attracted to tumor cells. The liposome-encased ceramide travels through the bloodstream to the tumor where it enters the tumor cells through the tumor’s leaky vasculature. The ceramide disrupts the mitochondria, which act as the energy producer for the cell. This causes apoptosis, or cell death. The ceramide also reduces the vascular network that feeds the tumor. In this study in mice, the ceramide bundles targeted and destroyed only breast cancer cells, sparing the surrounding healthy tissue.

Kester and his team first tested the ceramide-filled liposomes in a culture of breast cancer cells. The administration of ceramide reduced by more than 50 percent the number of breast cancer cells. Additional cell culture studies showed that ceramide accumulated in the mitochondria of the breast cancer cells supporting earlier laboratory studies that ceramide interferes with the structure of the cell and causes tumor death.

In a mouse model of breast tumors, the team administered liposome-encased ceramide every other day via intravenous injection. After 21 days, the mice treated with the liposome-encased ceramide had a six-fold lower tumor volume than the mice treated with "empty" liposomes. The weight of animals treated with ceramide did not vary significantly from the mice treated with empty liposomes signifying that the ceramide was not toxic (weight would have been lower with toxicity). When the tumors were examined, those treated with ceramide showed a 20-fold increase in cellular apoptosis and a 40 percent decrease in cellular proliferation, or growth, compared to the control group.

"Although we’ve shown that ceramide has an effect on breast tumor cells in mice, breast cancer cells in humans may eventually resist the treatment, suggesting that ceramide should be used in combination with more traditional cancer treatments as a treatment booster," Kester said. "Our next step is to explore how additional chemotherapeutic agents could be incorporated into the liposomes for a more lasting effect."

Other study team members were: Thomas C. Stover, Ph.D., Arati Sharma, Ph.D., Department of Pharmacology, and Gavin P. Robertson, Ph.D., Departments of Pharmacology, Pathology, and Dermatology, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center. All research methods were approved by the Animal Care and Use Committee of Penn State College of Medicine. This study was supported by a grant from the National Institutes of Health.

Valerie Gliem | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>