Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After a time-shift, mixed signals from the circadian clock

24.05.2005


Circadian rhythms in mammalian behavior, physiology, and biochemistry are controlled by the central clock within a brain structure known as the suprachiasmatic nucleus (SCN). The clock is synchronized to environmental cycles of light and dark. It is well known, from everyday experience, that adjusting to new light schedules takes several days, though the details of how this adaptation takes place are not well understood.



Researchers now report findings that suggest this adaptation process does not necessarily involve a gradual and synchronous adaptation by the neurons that comprise the central circadian clock--rather, that different components of the clock tend to adapt to a shifted light schedule at two different speeds.

The work is reported in the May 24 issue of Current Biology by a research team led by Johanna H. Meijer of Leiden University Medical Center in The Netherlands.


The researchers studied clock-resetting behavior in rats that were exposed to a six-hour delay of the light schedule, a shift that mimics a transition from the eastern U.S. to western Europe. By performing electrophysiological analysis of cells that constitute the central circadian clock, the researchers made a surprising discovery: one part of the clock mechanism, represented by a dorsal (upper) group of cells, exhibited oscillations in activity that corresponded to slow resetting of the clock in response to the shifted light schedule, while another part of the clock, represented by a ventral (lower) group of cells, exhibited a distinct pattern of activity that corresponded to fast resetting of the clock.

Perhaps contributing to the different behavior of the two groups of clock cells are the effects on these cells of the neurotransmitter GABA, which the researchers found to excite the cells of the dorsal SCN while inhibiting neurons in the ventral SCN. Because GABA transmits information between the ventral and dorsal SCN, such differences in effect might influence, in complex ways, how the two groups of cells adapt to a shifted light schedule.

The authors conclude that the phases of activity in the ventral and dorsal clock shift with different speeds. During a schedule shift corresponding to a transition from the U.S. to western Europe, the ventral part of the clock is immediately synchronized to the new light schedule, but the dorsal part of the clock requires several days to adjust. This results temporarily in bimodal patterns of electrical activity that are generated by the clock within the SCN. Because electrical activity is the output of the circadian clock, the findings suggest that after a significant shift in light schedule, the rest of the brain is transiently--for a duration of about six days--exposed to complex signaling patterns from the circadian clock.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>