Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After a time-shift, mixed signals from the circadian clock

24.05.2005


Circadian rhythms in mammalian behavior, physiology, and biochemistry are controlled by the central clock within a brain structure known as the suprachiasmatic nucleus (SCN). The clock is synchronized to environmental cycles of light and dark. It is well known, from everyday experience, that adjusting to new light schedules takes several days, though the details of how this adaptation takes place are not well understood.



Researchers now report findings that suggest this adaptation process does not necessarily involve a gradual and synchronous adaptation by the neurons that comprise the central circadian clock--rather, that different components of the clock tend to adapt to a shifted light schedule at two different speeds.

The work is reported in the May 24 issue of Current Biology by a research team led by Johanna H. Meijer of Leiden University Medical Center in The Netherlands.


The researchers studied clock-resetting behavior in rats that were exposed to a six-hour delay of the light schedule, a shift that mimics a transition from the eastern U.S. to western Europe. By performing electrophysiological analysis of cells that constitute the central circadian clock, the researchers made a surprising discovery: one part of the clock mechanism, represented by a dorsal (upper) group of cells, exhibited oscillations in activity that corresponded to slow resetting of the clock in response to the shifted light schedule, while another part of the clock, represented by a ventral (lower) group of cells, exhibited a distinct pattern of activity that corresponded to fast resetting of the clock.

Perhaps contributing to the different behavior of the two groups of clock cells are the effects on these cells of the neurotransmitter GABA, which the researchers found to excite the cells of the dorsal SCN while inhibiting neurons in the ventral SCN. Because GABA transmits information between the ventral and dorsal SCN, such differences in effect might influence, in complex ways, how the two groups of cells adapt to a shifted light schedule.

The authors conclude that the phases of activity in the ventral and dorsal clock shift with different speeds. During a schedule shift corresponding to a transition from the U.S. to western Europe, the ventral part of the clock is immediately synchronized to the new light schedule, but the dorsal part of the clock requires several days to adjust. This results temporarily in bimodal patterns of electrical activity that are generated by the clock within the SCN. Because electrical activity is the output of the circadian clock, the findings suggest that after a significant shift in light schedule, the rest of the brain is transiently--for a duration of about six days--exposed to complex signaling patterns from the circadian clock.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>