Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After a time-shift, mixed signals from the circadian clock

24.05.2005


Circadian rhythms in mammalian behavior, physiology, and biochemistry are controlled by the central clock within a brain structure known as the suprachiasmatic nucleus (SCN). The clock is synchronized to environmental cycles of light and dark. It is well known, from everyday experience, that adjusting to new light schedules takes several days, though the details of how this adaptation takes place are not well understood.



Researchers now report findings that suggest this adaptation process does not necessarily involve a gradual and synchronous adaptation by the neurons that comprise the central circadian clock--rather, that different components of the clock tend to adapt to a shifted light schedule at two different speeds.

The work is reported in the May 24 issue of Current Biology by a research team led by Johanna H. Meijer of Leiden University Medical Center in The Netherlands.


The researchers studied clock-resetting behavior in rats that were exposed to a six-hour delay of the light schedule, a shift that mimics a transition from the eastern U.S. to western Europe. By performing electrophysiological analysis of cells that constitute the central circadian clock, the researchers made a surprising discovery: one part of the clock mechanism, represented by a dorsal (upper) group of cells, exhibited oscillations in activity that corresponded to slow resetting of the clock in response to the shifted light schedule, while another part of the clock, represented by a ventral (lower) group of cells, exhibited a distinct pattern of activity that corresponded to fast resetting of the clock.

Perhaps contributing to the different behavior of the two groups of clock cells are the effects on these cells of the neurotransmitter GABA, which the researchers found to excite the cells of the dorsal SCN while inhibiting neurons in the ventral SCN. Because GABA transmits information between the ventral and dorsal SCN, such differences in effect might influence, in complex ways, how the two groups of cells adapt to a shifted light schedule.

The authors conclude that the phases of activity in the ventral and dorsal clock shift with different speeds. During a schedule shift corresponding to a transition from the U.S. to western Europe, the ventral part of the clock is immediately synchronized to the new light schedule, but the dorsal part of the clock requires several days to adjust. This results temporarily in bimodal patterns of electrical activity that are generated by the clock within the SCN. Because electrical activity is the output of the circadian clock, the findings suggest that after a significant shift in light schedule, the rest of the brain is transiently--for a duration of about six days--exposed to complex signaling patterns from the circadian clock.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>