Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find genetic link to cerebral hemorrhage and porencephaly

20.05.2005


Researchers at The Jackson Laboratory have discovered a genetic link to porencephaly, a rare but devastating neurological condition.



Their research, published in the May 19 issue of the journal Science, may have significant implications for preventing the disease in humans.

Usually exhibited in infants shortly after birth, symptoms of porencephaly include mental retardation, cerebral palsy or epilepsy. The brains of porencephaly patients show degenerative cavities and lesions. Researchers have suspected that the damage is the consequence of fetal trauma and/or genes affecting blood clotting that predispose to hemorrhage.


An international team discovered a genetic defect that weakens blood vessels in the brain, making an infant much more vulnerable to hemorrhaging. The team was led by Dr. Douglas Gould a postdoctoral fellow at The Jackson Laboratory and Jackson Laboratory Staff Scientist and Howard Hughes Medical Institute Investigator Dr. Simon W.M. John.

The researchers identified a mouse model of porencephaly. They found that the mice had a mutation in a collagen gene, COL4A1, which controls production of a basement membrane protein. As the name suggests, basement membranes provide foundations for a variety of tissues, including forming a strong sheath around blood vessels. The scientists concluded that the mutant collagen protein cannot be secreted into the basement membrane of the blood vessels causing them to be weakened. Instead, mutant collagen proteins accumulate within the cells lining the blood vessels possibly damaging them. The combination of cells with accumulated mutant protein and the weak basement membrane around blood vessels predisposes to hemorrhage.

To determine whether humans with porencephaly also have COL4A1 mutations, the researchers studied two families with a history of the disease and found the mutations. Control families had neither the mutation nor any history of porencephaly.

Since not all mice with the mutation develop porencephaly and the human disease is also variable, the researchers suggest that the weakened blood vessels in the brain could be damaged by stress on the head during birth, resulting in cerebral hemorrhage and subsequent porencephaly.

"Our finding could have important implications for disease prevention," said Dr. Gould. "For individuals who are at risk for vascular defects caused by mutations in COL4A1 genes, actions to reduce the stress on the weakened cerebral blood vessels could reduce the neurological damage. For example, Cesarean delivery of at-risk babies could increase the possibility of a healthy life," he concluded.

Joyce Peterson | EurekAlert!
Further information:
http://www.jax.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>