Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research marks giant step in potential of using stem cells to treat human disorders

20.05.2005


Nuclear transfer yields immune-matched human embryonic stem cell lines from patients with spinal cord injury, juvenile diabetes and immune deficiency

Research from the Republic of Korea’s Seoul National University published in this week’s edition of Science represents a major advance in the science of using stem cells to repair damage caused by human disease and injury, according to Gerald Schatten, Ph.D., professor and vice chair of research development in the department of obstetrics, gynecology and reproductive sciences at the University of Pittsburgh School of Medicine and a co-author on the Korean study.

"What the study shows is that stem cells can be made that are specific to patients regardless of age or sex and that these cells are identical genetic matches to the donor," said Dr. Schatten, who also is director of the Pittsburgh Development Center (PDC) at the Magee-Womens Research Institute and a professor of cell biology and physiology at the School of Medicine. "If they can be safely used in transplant, the promise for effective treatment – perhaps even cure – of devastating diseases and injuries comes within reach."



Researchers led by Woo Suk Hwang, D.V.M., Ph.D., professor at Seoul National University, previously made history when they announced the first successful cloning of a human embryonic stem cell line in February 2004 at the American Association for the Advancement of Science meeting in Seattle. Dr. Hwang and his colleagues have since refined their techniques, making astonishing progress in just one year, said Dr. Schatten, who acted as an advisor to the Korean lab for the purposes of data analysis, interpretation and preparation of an English-language manuscript on the landmark study.

As Dr. Hwang and his colleagues report, 18 women donated 185 eggs specifically for research purposes at Hanyang University Hospital in Seoul. Of these, 125 came from 10 women under the age of 30. To obtain somatic cells, the researchers recruited 11 donors, who included males and females ranging in age from 2 to 56. In the case of minors, parental consent was obtained. A somatic cell is any cell in the body other than sperm or egg cells. Among somatic cell donors were individuals who had juvenile diabetes, spinal cord injury and a genetic immune deficiency called congenital hypogammaglobulinemia, which can lead to an increased risk of infections.

Using these resources, 11 lines of human embryonic stem cells were derived through nuclear transfer. Somatic cells used from donor patients were grown from skin biopsies. These 11 lines were established from 31 artificially engineered cell constructs created by nuclear transfer. An average of 17 eggs were used for each stem cell line.

Neither sex nor age of the nuclear donor appeared to influence success in deriving embryonic stem cell lines. However, eggs donated by younger women showed a higher rate of success than those from older women. Among egg donors under 30, an average of less than 14 eggs were used to generate a stem cell line.

"This research is doubly important because it shows that efficient patient-specific cellular models of human disease can be developed and studied with more precision than ever before," said Dr. Schatten, whose own cloning work is confined to non-human primates. "With the promise of curing devastating disease and reversing injuries that cause so much human suffering, isn’t it a moral obligation for scientists to continue this avenue of research responsibly?"

Dedicated to sound and responsible medical research and collaboration, the Pittsburgh Development Center of Magee-Womens Research Institute explores the molecular biology of cell function to determine the origins of developmental diseases, the causes and prevention of adverse pregnancy outcomes and the potential of stem cells for treating human disease.

Among its other strengths, the PDC is emerging as a world center for the study of stem cells, which are precursor cells with the ability to grow into any tissue and have the capability for treating a variety of human diseases. Before stem cell treatments are developed, PDC researchers will determine the best conditions in which to grow these precious cells. PDC researchers will demonstrate their safety and effectiveness in the laboratory before patients receive stem cell treatments.

Michele D. Baum | EurekAlert!
Further information:
http://www.pdc.magee.edu
http://www.upmc.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>