Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human cells can ’silence’ HIV genes

20.05.2005


For the first time, scientists have shown that humans use an immune defense process common in plants and invertebrates to battle a virus. The new finding that human cells can silence an essential part of HIV’s genetic make-up could have important implications for the treatment of people infected with the virus. Led by Kuan-Teh Jeang, M.D, Ph.D., of the National Institute of Allergy and Infectious Diseases (NIAID), part the National Institutes of Health, the researchers published their findings in this week’s issue of the journal Immunity.



"This research suggests that a novel approach to HIV therapy targeting a stable component of HIV might be feasible," says NIAID Director Anthony S. Fauci, M.D.

The phenomenon, called RNA silencing, was detected first in plants and later in insects. Although plants and insects lack the sophisticated immune defenses of higher organisms, they nevertheless successfully battle viruses by detecting, and then silencing, viral genetic material. Silencing leads to the destruction of viral RNA. Viruses, however, are not permanently defeated because they have evolved ways to suppress the silencing action.


Until now, scientists have not had clear evidence that RNA silencing plays a role in the defensive repertoire of mammals and other vertebrates. Dr. Jeang and his colleagues set out to determine if RNA silencing (also called RNA interference or RNAi) contributes to human cells’ defense against HIV.

They asked three questions. First, does HIV have genetic sequences that an HIV-infected cell can detect and transform into the necessary precursors of RNAi, called short interfering RNA (siRNA)? Second, do human cells use siRNAs to disable HIV? Third, if human cells try to battle HIV using RNAi, does HIV have a way to evade the defensive maneuver? The answer to all three questions, the scientists determined, is yes.

The most unexpected finding, according to Dr. Jeang, was the way HIV uses one of its proteins, called Tat, to suppress the silencing efforts of the cell. HIV is well known for evading drugs by quickly mutating its genes. However, the virus could not evade the newly discovered sequence-specific siRNA attack by mutation. Instead, HIV required a virally encoded protein to blunt the assault. Dr. Jeang believes that Tat may be shielding a rare HIV Achilles’ heel, a genetic sequence that, for functional reasons, the virus cannot change in order to escape siRNA attack. This novel siRNA sequence discovered by the team may lead to the development of new RNAi-based drugs to which HIV would not be able to develop resistance by simple mutation.

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>