Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ultimate spa: embryonic body wash controls left-right development

20.05.2005


Humans and other animals may appear to be symmetrical on the outside, but symmetry is only skin deep. Many body organs, such as the stomach, the heart and the liver, are tipped to the right or left side. So how does the developing embryo distinguish left from right? Salk scientists have now discovered that the foundations for the basic left-right body plan are laid by a microscopic ’pump’ on the outer surface of the embryo’s underside that wafts chemical messengers over to the left side of the body. This sets up a chemical concentration gradient that tells stem cells how and where to develop. The remarkable findings, including movie footage of the ’pump,’ are published in the May 20th edition of the journal Cell.



Juan Carlos Izpisúa Belmonte and his colleagues studied the ventral node, a small patch of specialized cells on the outer surface of the underside (’ventral’ side) of early embryos in many animals. Each cell in the ventral node has a single, rapidly rotating thread (cilium) projecting from the cell surface. Belmonte and colleagues at the University of Tokyo in Japan had previously demonstrated that the ventral node and its rotating cilia influence the left-right body plan, but until now no-one knew the mechanisms involved.

In the current study, Belmonte’s team compared the ventral node in embryos of mice, rabbits and fish, and discovered the same mechanism in all these animals: the rapid, clockwise rotation of the whip-like cilia was actively moving fluid from the right side to the left side of the developing embryo.


The Salk scientists were intrigued by the finding because the forest of rotating cilia were more likely to create a whirlpool than a river. "The unidirectional flow produced by the rotation-like movement of the cilia required a specific mechanism because a simple circling movement would have, logically, just produced a vortex," said Belmonte.

Over the next three years, using a combination of mathematical modeling, high-speed video recording, and electron microscopy, Belmonte and his Salk colleagues Marta Ibañes and Diego Rasskin-Gutman worked to solve this puzzle jointly with their collaborators at the Parc Cientific de Barcelona in Spain and at the University of Tokyo in Japan. The scientists discovered that the cilia generate a current because they are tipped over at a 40-degree angle, rather like a twirling parasol over the shoulder of a Southern Belle. Their live (in vivo) observations feature in the current Cell article.

The cilia, which twirl at 10 cycles per second, were too fast for conventional video recording and so the scientists captured their complex movement on a specially adapted high-speed video moving at 500 frames per second.

"The net result is that the clockwise rotation of the cilia is converted into a right-to-left current over the embryo," said Ibañes. "The leftward current then acts as an amplifier, translating the ciliary dynamics into a large effect that covers a wide region of the embryo."

The Salk team suspected that the purpose of the cilia ’pump’ was to concentrate messenger proteins on the left side of the embryo. This would, in effect, set up a chemical gradient that would tell developing cells whether they were on the right or left side of the body. Using proteins labelled with fluorescent tags, the researchers demonstrated that the cilia pump was capable of transporting proteins of a similar size to known chemical messengers. It took about 4 seconds for the test proteins to be whisked across the pinhead-sized primitive embryo.

Belmonte said that the next step is identifying the chemical messengers involved in the right-left flow and decoding the messages that they carry. "This study not only gives us a fascinating insight into why we are asymmetric; it may also be at the root of how the human body plan is built," he said.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>