Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find first gene for inherited testicular cancer in mice


In this week’s journal Nature, researchers report finding the first gene responsible for inherited susceptibility of testicular cancer in mice. The Ter mutation occurs in a gene called dead end, which is involved in normal testicular development and which may play a role in inherited forms of a testicular cancer occurring in infants.

The mutation causes a huge increase in testicular cancer incidence, from 5 percent to 94 percent. Although this dramatic rise was described in a mouse strain more than 30 years ago, it has taken until now for the identity of the gene itself to be discovered.

These results suggest that the Ter mutation may adversely affect essential aspects of primordial germ cell biology, and the authors explain that the work will have important implications for understanding of the genetic control of testicular germ cell tumors.

"Dead end is the earliest acting genetic defect that leads to these tumors," said Joseph Nadeau, Ph.D., a co-senior author of the paper and the Jewell Professor and Chair of Genetics at the Case Western Reserve University School of Medicine. "Interestingly, this defect causes these mice to develop tumors during fetal development. The mutation in the dead end gene increases susceptibility nearly 20 fold and is therefore one of the most potent inherited cancer genes," he said.

The researchers say that the gene appears to be involved in controlling RNA editing, which is a poorly understood process to change the RNA sequence in specific ways to build proteins. "For the first time, we know the identity of one of the genes that controls inherited susceptibility. This gene and other functionally related genes might be used to diagnose at-risk individuals for more careful monitoring. And perhaps by understanding the role of RNA editing in the biology of the cancer stem cells we can develop improved therapeutics to treat and perhaps prevent these cancers,"said Nadeau.

"Our discovery also has implications for studies of stem cell biology. Many forms of testicular cancer, including the pediatric forms, originate from perhaps the most important stem cell, the primordial germ cell," he said.

Angabin Matin, Ph.D., the paper’s other senior co-author and an assistant professor in the Department of Molecular Genetics at the University of Texas, MD Anderson Cancer Center in Houston, said, "Germ cell tumors arise from primordial germ cells, which become transformed into embryonal carcinoma cells (EC cells) before giving rise to the tumors. EC cells were observed to be pluripotent and have stem cell like properties in that they can be made to differentiate into many cell and tissue types and they have been used for this purpose before the derivation of embryonic stem cells (ES cells) directly from mouse embryos. The knowledge that loss of dead end allows EC cells to develop will provide clues as to how and why pluripotent cells arise."

Testicular cancer is the most common type of cancer among males between 15 to 30 years of age, and its incidence is increasing in western countries.

The researchers named the mutation Ter for teratoma, a form of testicular cancer.

George Stamatis | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>