Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find first gene for inherited testicular cancer in mice

19.05.2005


In this week’s journal Nature, researchers report finding the first gene responsible for inherited susceptibility of testicular cancer in mice. The Ter mutation occurs in a gene called dead end, which is involved in normal testicular development and which may play a role in inherited forms of a testicular cancer occurring in infants.



The mutation causes a huge increase in testicular cancer incidence, from 5 percent to 94 percent. Although this dramatic rise was described in a mouse strain more than 30 years ago, it has taken until now for the identity of the gene itself to be discovered.

These results suggest that the Ter mutation may adversely affect essential aspects of primordial germ cell biology, and the authors explain that the work will have important implications for understanding of the genetic control of testicular germ cell tumors.


"Dead end is the earliest acting genetic defect that leads to these tumors," said Joseph Nadeau, Ph.D., a co-senior author of the paper and the Jewell Professor and Chair of Genetics at the Case Western Reserve University School of Medicine. "Interestingly, this defect causes these mice to develop tumors during fetal development. The mutation in the dead end gene increases susceptibility nearly 20 fold and is therefore one of the most potent inherited cancer genes," he said.

The researchers say that the gene appears to be involved in controlling RNA editing, which is a poorly understood process to change the RNA sequence in specific ways to build proteins. "For the first time, we know the identity of one of the genes that controls inherited susceptibility. This gene and other functionally related genes might be used to diagnose at-risk individuals for more careful monitoring. And perhaps by understanding the role of RNA editing in the biology of the cancer stem cells we can develop improved therapeutics to treat and perhaps prevent these cancers,"said Nadeau.

"Our discovery also has implications for studies of stem cell biology. Many forms of testicular cancer, including the pediatric forms, originate from perhaps the most important stem cell, the primordial germ cell," he said.

Angabin Matin, Ph.D., the paper’s other senior co-author and an assistant professor in the Department of Molecular Genetics at the University of Texas, MD Anderson Cancer Center in Houston, said, "Germ cell tumors arise from primordial germ cells, which become transformed into embryonal carcinoma cells (EC cells) before giving rise to the tumors. EC cells were observed to be pluripotent and have stem cell like properties in that they can be made to differentiate into many cell and tissue types and they have been used for this purpose before the derivation of embryonic stem cells (ES cells) directly from mouse embryos. The knowledge that loss of dead end allows EC cells to develop will provide clues as to how and why pluripotent cells arise."

Testicular cancer is the most common type of cancer among males between 15 to 30 years of age, and its incidence is increasing in western countries.

The researchers named the mutation Ter for teratoma, a form of testicular cancer.

George Stamatis | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>