Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Testicular cancer gene in mice may offer clues to origins of cancer in men

19.05.2005


Researchers have located a gene dubbed dead end that when mutated or lost, causes testicular tumors in mice. They say their study, published in the online journal Nature, on May 18, 2005 will likely offer future insights into the genetic causes of the disease in humans because the cancer originates from the same cell type, the primordial germ cell, in both mice and men.



If that notion is validated through further research, the finding could lead to a way to either screen for the human disease or treat it, say the researchers, who represent The University of Texas M. D. Anderson Cancer Center, Case Western Reserve University, Duke University Medical Center, the National Cancer Institute and the Lawrence Berkeley National Laboratory.

"One can envision that this gene or others in its pathway could possibly be used for screening or therapeutic purposes in young males predisposed to develop testicular cancer or those who have a family history of this disease," says the lead investigator, Angabin Matin, Ph.D., an assistant professor in the Department of Molecular Genetics at M. D. Anderson. "This will of course require further research regarding the function of this gene in human cancers."


Although the connection is more tenuous, the researchers add that their finding also could offer a clue as to the link between male infertility and testicular cancer, since loss of the dead end gene in a laboratory fish model of reproductive diseases leads to the inability to procreate. "And in humans, testicular cancer and infertility have been frequently associated with one another," Matin notes.

Still, the researchers say this study is most relevant to human testicular cancer. According to the National Cancer Institute, testicular cancer usually strikes men between the ages of 15 and 39 and is the most common form of cancer in men between the ages of 20 and 34. Although it accounts for only about 1 percent of all male cancers, the rate of testicular cancer among white men has more than doubled in the past 40 years. It is also one of the most curable forms of cancer.

The study is the culmination of 30 years of research that has focused on a strain of male mice known as the "129 family" that spontaneously develops tumors in their testicles. Although researchers had suspected that a faulty or missing gene was to blame, researchers had a difficult time in pinpointing a single genetic change because germ cells were so altered that tumors developed just a week after the mice were born.

Matin, working as a post-doctoral researcher at Case Western Reserve University with Joseph Nadeau, Ph.D., a co-author of this paper, decided to study tumor development in mouse embryos. In 2001, she mapped the location of ter, a mutation which was directly associated with development of the testicular tumors. At the same time, another group of researchers in Germany found a gene they called dead end. When missing, this gene was linked to sterility in zebrafish, a commonly used invertebrate model for human development and disease.

Knowing that genes involved in reproduction in many vertebrates have been found to be similar, Matin suspected that dead end might be the source of the ter mutation because they seemed to be located in corresponding regions of the genomes of mice and zebrafish. So she and a team of researchers set about to confirm that ter was indeed the mouse version of dead end.

In zebrafish, loss of dead end resulted in the loss of primordial germ cells, those stem cells that give rise to sperm in males. In the 129 family of mice, loss of dead end results not only in sterility, but also in the development of tumors, for reasons that the researchers do not yet understand. The tumors in mice usually do not metastasize, but that is probably because the mice do not live long enough for the cancer to mutate enough to spread, the researchers believe.

"We haven’t filled in the picture yet, but when dead end is lost or not expressed in germ cells, they don’t die as they do in zebrafish, but they frequently survive and become transformed in a way that produces germ cell tumors," Matin says.

Evidence exists in humans that these tumors also arise during fetal development, and this is most likely due to a similar genetic susceptibility, she says. "The tumors that we study in mice represent a model for testicular tumors observed in human infants," she says. "In this case, it may be that such early development of the cancer results when the infant has lost both copies of his dead end gene."

The researchers theorize that testicular cancer that develops in young adults may also originate from a genetic mutation during fetal development - perhaps by inheritance of a single dead end mutation - and tumor development occurs later due to environmental exposures or other genetic susceptibilities and losses.

"Extrapolating from the findings in Ter mice, although germ cell tumors present clinically in infants and young adults, it is apparent that genetic and environmental influences during embryogenesis increase the susceptibility of primordial germ cells to tumorigenesis," she says.

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>