Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered ’branding’ process helps immune system cells pick their fights

18.05.2005


Finding may have ramifications for vaccines, autoimmunity and atherosclerosis



Scientists have uncovered a new method the immune system uses to label foreign invaders as targets to be attacked. Researchers showed that the immune system can brand foreign proteins by chemically modifying their structure, and that these modifications increased the chances that cells known as lymphocytes would recognize the trespassers and attack them. "Now that we know that some T cells need to see these types of modifications to identify an invader, we can see if incorporating such changes into the proteins is helpful for vaccination," says senior author Emil R. Unanue, M.D., the Edward Mallinckrodt Professor and head of Pathology and Immunology.

The finding may also be relevant to autoimmune conditions where the immune system erroneously attacks healthy tissues. Such disorders include rheumatoid arthritis, multiple sclerosis and type 1 diabetes. "We show in this study that during some infections, these same types of modifications can be made to our own proteins, potentially leading to T cell attacks on the self," says Unanue.


Unanue and colleagues, who publish their results on May 31 in the Proceedings of the National Academy of the Sciences, conducted their studies in mice and in cultures of mouse cells. Jeremy Herzog, a research associate in Unanue’s lab, did many of the experiments and was the lead author of the study.

T cells belong to a class of immune cells known as thymic-lymphocytes, which in turn are a component of the branch of the immune system known as adaptive immunity. This branch responds to pathogens after they interact with the other major branch, the innate immune system. T cells kill pathogens or produce molecules like cytokines that stop their growth. Scientists have known for some time that a second class of innate immune system cells known as antigen-presenting cells helps T cells determine what to attack. They do this by displaying fragments of proteins they have picked up on their surfaces for inspection by T cells. Fragments of proteins are called peptides.

Researchers also knew that when antigen-presenting cells are activated by inflammatory factors or microbial products, they start putting out chemically unstable compounds such as nitric oxide and superoxide. Together, these compounds generate peroynitrate, a highly potent chemical that modifies many proteins.

Unanue’s group showed that this chemical modifies the peptides presented by antigen-presenting cells in several distinct ways. For example, they attach a nitrate group to the amino acid tyrosine in the peptides, changing it to nitrotyrosine. Unanue’s lab then showed that these changes increased the chances that various types of T cells would react to the modified peptides shown to them by antigen-presenting cells.

Unanue’s group is working to substantiate their findings and explore their potential relevance to different areas of biomedical research. He notes that insulin-producing beta cells, the pancreatic cells attacked by T cells in type 1 diabetes, also generate reactive compounds similar to those made by antigen-presenting cells. "The beta cells could therefore be modifying their own proteins in the same way that antigen-presenting cells are modifying foreign proteins," he says. "We’re now investigating whether such modifications can cause T cells to attack the beta cells."

Damaging oxidative reactions are also believed to play a role in atherosclerosis. Scientists suspect oxidative damage in the blood vessel walls may lead to immune reactivity that contributes to narrowing and stiffening of blood vessels.

Herzog J, Maekawa Y, Cirrito TP, Illian BS, Unanue ER. Activated antigen-presenting cells select and present chemically modified peptides recognized by unique CD4 T cells. Proceedings of the National Academy of the Sciences, 102 (22), 7928-7933.

Funding from the National Institutes of Health and the Kilo Diabetes and Vascular Research Foundation supported this research.

Washington University School of Medicine’s full-time and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>