Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered ’branding’ process helps immune system cells pick their fights

18.05.2005


Finding may have ramifications for vaccines, autoimmunity and atherosclerosis



Scientists have uncovered a new method the immune system uses to label foreign invaders as targets to be attacked. Researchers showed that the immune system can brand foreign proteins by chemically modifying their structure, and that these modifications increased the chances that cells known as lymphocytes would recognize the trespassers and attack them. "Now that we know that some T cells need to see these types of modifications to identify an invader, we can see if incorporating such changes into the proteins is helpful for vaccination," says senior author Emil R. Unanue, M.D., the Edward Mallinckrodt Professor and head of Pathology and Immunology.

The finding may also be relevant to autoimmune conditions where the immune system erroneously attacks healthy tissues. Such disorders include rheumatoid arthritis, multiple sclerosis and type 1 diabetes. "We show in this study that during some infections, these same types of modifications can be made to our own proteins, potentially leading to T cell attacks on the self," says Unanue.


Unanue and colleagues, who publish their results on May 31 in the Proceedings of the National Academy of the Sciences, conducted their studies in mice and in cultures of mouse cells. Jeremy Herzog, a research associate in Unanue’s lab, did many of the experiments and was the lead author of the study.

T cells belong to a class of immune cells known as thymic-lymphocytes, which in turn are a component of the branch of the immune system known as adaptive immunity. This branch responds to pathogens after they interact with the other major branch, the innate immune system. T cells kill pathogens or produce molecules like cytokines that stop their growth. Scientists have known for some time that a second class of innate immune system cells known as antigen-presenting cells helps T cells determine what to attack. They do this by displaying fragments of proteins they have picked up on their surfaces for inspection by T cells. Fragments of proteins are called peptides.

Researchers also knew that when antigen-presenting cells are activated by inflammatory factors or microbial products, they start putting out chemically unstable compounds such as nitric oxide and superoxide. Together, these compounds generate peroynitrate, a highly potent chemical that modifies many proteins.

Unanue’s group showed that this chemical modifies the peptides presented by antigen-presenting cells in several distinct ways. For example, they attach a nitrate group to the amino acid tyrosine in the peptides, changing it to nitrotyrosine. Unanue’s lab then showed that these changes increased the chances that various types of T cells would react to the modified peptides shown to them by antigen-presenting cells.

Unanue’s group is working to substantiate their findings and explore their potential relevance to different areas of biomedical research. He notes that insulin-producing beta cells, the pancreatic cells attacked by T cells in type 1 diabetes, also generate reactive compounds similar to those made by antigen-presenting cells. "The beta cells could therefore be modifying their own proteins in the same way that antigen-presenting cells are modifying foreign proteins," he says. "We’re now investigating whether such modifications can cause T cells to attack the beta cells."

Damaging oxidative reactions are also believed to play a role in atherosclerosis. Scientists suspect oxidative damage in the blood vessel walls may lead to immune reactivity that contributes to narrowing and stiffening of blood vessels.

Herzog J, Maekawa Y, Cirrito TP, Illian BS, Unanue ER. Activated antigen-presenting cells select and present chemically modified peptides recognized by unique CD4 T cells. Proceedings of the National Academy of the Sciences, 102 (22), 7928-7933.

Funding from the National Institutes of Health and the Kilo Diabetes and Vascular Research Foundation supported this research.

Washington University School of Medicine’s full-time and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>