Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered ’branding’ process helps immune system cells pick their fights

18.05.2005


Finding may have ramifications for vaccines, autoimmunity and atherosclerosis



Scientists have uncovered a new method the immune system uses to label foreign invaders as targets to be attacked. Researchers showed that the immune system can brand foreign proteins by chemically modifying their structure, and that these modifications increased the chances that cells known as lymphocytes would recognize the trespassers and attack them. "Now that we know that some T cells need to see these types of modifications to identify an invader, we can see if incorporating such changes into the proteins is helpful for vaccination," says senior author Emil R. Unanue, M.D., the Edward Mallinckrodt Professor and head of Pathology and Immunology.

The finding may also be relevant to autoimmune conditions where the immune system erroneously attacks healthy tissues. Such disorders include rheumatoid arthritis, multiple sclerosis and type 1 diabetes. "We show in this study that during some infections, these same types of modifications can be made to our own proteins, potentially leading to T cell attacks on the self," says Unanue.


Unanue and colleagues, who publish their results on May 31 in the Proceedings of the National Academy of the Sciences, conducted their studies in mice and in cultures of mouse cells. Jeremy Herzog, a research associate in Unanue’s lab, did many of the experiments and was the lead author of the study.

T cells belong to a class of immune cells known as thymic-lymphocytes, which in turn are a component of the branch of the immune system known as adaptive immunity. This branch responds to pathogens after they interact with the other major branch, the innate immune system. T cells kill pathogens or produce molecules like cytokines that stop their growth. Scientists have known for some time that a second class of innate immune system cells known as antigen-presenting cells helps T cells determine what to attack. They do this by displaying fragments of proteins they have picked up on their surfaces for inspection by T cells. Fragments of proteins are called peptides.

Researchers also knew that when antigen-presenting cells are activated by inflammatory factors or microbial products, they start putting out chemically unstable compounds such as nitric oxide and superoxide. Together, these compounds generate peroynitrate, a highly potent chemical that modifies many proteins.

Unanue’s group showed that this chemical modifies the peptides presented by antigen-presenting cells in several distinct ways. For example, they attach a nitrate group to the amino acid tyrosine in the peptides, changing it to nitrotyrosine. Unanue’s lab then showed that these changes increased the chances that various types of T cells would react to the modified peptides shown to them by antigen-presenting cells.

Unanue’s group is working to substantiate their findings and explore their potential relevance to different areas of biomedical research. He notes that insulin-producing beta cells, the pancreatic cells attacked by T cells in type 1 diabetes, also generate reactive compounds similar to those made by antigen-presenting cells. "The beta cells could therefore be modifying their own proteins in the same way that antigen-presenting cells are modifying foreign proteins," he says. "We’re now investigating whether such modifications can cause T cells to attack the beta cells."

Damaging oxidative reactions are also believed to play a role in atherosclerosis. Scientists suspect oxidative damage in the blood vessel walls may lead to immune reactivity that contributes to narrowing and stiffening of blood vessels.

Herzog J, Maekawa Y, Cirrito TP, Illian BS, Unanue ER. Activated antigen-presenting cells select and present chemically modified peptides recognized by unique CD4 T cells. Proceedings of the National Academy of the Sciences, 102 (22), 7928-7933.

Funding from the National Institutes of Health and the Kilo Diabetes and Vascular Research Foundation supported this research.

Washington University School of Medicine’s full-time and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>