Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newly discovered ’branding’ process helps immune system cells pick their fights


Finding may have ramifications for vaccines, autoimmunity and atherosclerosis

Scientists have uncovered a new method the immune system uses to label foreign invaders as targets to be attacked. Researchers showed that the immune system can brand foreign proteins by chemically modifying their structure, and that these modifications increased the chances that cells known as lymphocytes would recognize the trespassers and attack them. "Now that we know that some T cells need to see these types of modifications to identify an invader, we can see if incorporating such changes into the proteins is helpful for vaccination," says senior author Emil R. Unanue, M.D., the Edward Mallinckrodt Professor and head of Pathology and Immunology.

The finding may also be relevant to autoimmune conditions where the immune system erroneously attacks healthy tissues. Such disorders include rheumatoid arthritis, multiple sclerosis and type 1 diabetes. "We show in this study that during some infections, these same types of modifications can be made to our own proteins, potentially leading to T cell attacks on the self," says Unanue.

Unanue and colleagues, who publish their results on May 31 in the Proceedings of the National Academy of the Sciences, conducted their studies in mice and in cultures of mouse cells. Jeremy Herzog, a research associate in Unanue’s lab, did many of the experiments and was the lead author of the study.

T cells belong to a class of immune cells known as thymic-lymphocytes, which in turn are a component of the branch of the immune system known as adaptive immunity. This branch responds to pathogens after they interact with the other major branch, the innate immune system. T cells kill pathogens or produce molecules like cytokines that stop their growth. Scientists have known for some time that a second class of innate immune system cells known as antigen-presenting cells helps T cells determine what to attack. They do this by displaying fragments of proteins they have picked up on their surfaces for inspection by T cells. Fragments of proteins are called peptides.

Researchers also knew that when antigen-presenting cells are activated by inflammatory factors or microbial products, they start putting out chemically unstable compounds such as nitric oxide and superoxide. Together, these compounds generate peroynitrate, a highly potent chemical that modifies many proteins.

Unanue’s group showed that this chemical modifies the peptides presented by antigen-presenting cells in several distinct ways. For example, they attach a nitrate group to the amino acid tyrosine in the peptides, changing it to nitrotyrosine. Unanue’s lab then showed that these changes increased the chances that various types of T cells would react to the modified peptides shown to them by antigen-presenting cells.

Unanue’s group is working to substantiate their findings and explore their potential relevance to different areas of biomedical research. He notes that insulin-producing beta cells, the pancreatic cells attacked by T cells in type 1 diabetes, also generate reactive compounds similar to those made by antigen-presenting cells. "The beta cells could therefore be modifying their own proteins in the same way that antigen-presenting cells are modifying foreign proteins," he says. "We’re now investigating whether such modifications can cause T cells to attack the beta cells."

Damaging oxidative reactions are also believed to play a role in atherosclerosis. Scientists suspect oxidative damage in the blood vessel walls may lead to immune reactivity that contributes to narrowing and stiffening of blood vessels.

Herzog J, Maekawa Y, Cirrito TP, Illian BS, Unanue ER. Activated antigen-presenting cells select and present chemically modified peptides recognized by unique CD4 T cells. Proceedings of the National Academy of the Sciences, 102 (22), 7928-7933.

Funding from the National Institutes of Health and the Kilo Diabetes and Vascular Research Foundation supported this research.

Washington University School of Medicine’s full-time and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>