Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unrestrained retina too much of a good thing

18.05.2005


When primitive nerve cells begin forming an eye in the mouse embryo, they are programmed to build a retina. But the ability to see depends upon connecting the retina to the brain via the optic nerve. Unless these embryonic cells are given the right cue at the right time, they mistakenly form a huge eye that consists entirely of retina and lacks the optic nerve.



The discovery that the retina is the ’default’ setting for development in the embryonic eye comes from research by neurobiologist Greg Lemke and his colleagues at the Salk Institute for Biological Studies, published in the current issue of Genes & Development. The scientists carried out their work on the laboratory mouse as a model of human biology. "Our results suggest that the retina is effectively the default pathway for eye development in mammals," said Lemke. The Salk team showed that two chemical cues, or signalling proteins, must be present in the right place at the right time to shut down this default pathway and allow the optic nerve to develop.

The painstaking work of the Salk team has important consequences since controlling the fate of stem cells implanted into the brain is crucial if these cells are to be safely and effectively used in human therapy. "This study gives us a fascinating insight into how the parts of the brain are laid out because it is likely that the same model applies throughout the nervous system," said Lemke. "There are likely to be other brain areas whose development relies on blocking a tendency to turn into the same cell types as their neighbor."


Lemke and co-authors Stina H. Mui, Jin Woo Kim and Stefano Bertuzzi studied eye development in genetically engineered mouse embryos that lacked the two signalling proteins Vax1 and Vax2. The mice developed normally until approximately 10 days after conception, at which point they started to develop one large, folded sheet of retina, instead of a retina and an optic nerve. "We were fascinated by our results because they were so dramatic," said Lemke. "The layers of the retina were perfectly formed but the retina reached all the way to the brain and there was no optic nerve. In effect, without the restraining influence of Vax1 and Vax2 the brain had created one gigantic eye."

The Salk team then spent the next two years uncovering the mechanisms involved. "It’s fairly easy to describe the effect but it’s much tougher to explain what’s going on," said Mui.

Using complex gene expression techniques, the researchers painstakingly discovered that the fate of the eye is determined over the space of just a couple of days by a complex yet remarkably efficient system. The stem cells in the embryo destined to become the eye start out as identical. In response to external chemical messages, a gene called Pax6 is activated and becomes a powerful switch that tells these ’eye’ cells to start developing into the retina. If nothing happens to stop this process, all the ’eye’ cells will continue along this developmental path until one, huge retina is formed. However, this is normally prevented when the ’eye’ cells closest to the centre of the brain start to produce Vax1 and Vax2, which act as chemical brakes on Pax6. As a result, these cells turn into the optic nerve instead.

"Normally Pax6 is turned off in the ventral optic stalk to allow the optic nerve to develop," said Kim. "It’s an incredibly efficient way to control development because you don’t need a completely new pathway for a new structure."

"Pax 6 is a powerful and ancient gene for eye determination," noted Lemke. "It plays this role from fruit flies to humans. As a consequence, its expression must be highly regulated during development." Although the retina is obviously required for sight, Lemke points out that "it’s possible to have too much of a good thing."

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>