Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unrestrained retina too much of a good thing

18.05.2005


When primitive nerve cells begin forming an eye in the mouse embryo, they are programmed to build a retina. But the ability to see depends upon connecting the retina to the brain via the optic nerve. Unless these embryonic cells are given the right cue at the right time, they mistakenly form a huge eye that consists entirely of retina and lacks the optic nerve.



The discovery that the retina is the ’default’ setting for development in the embryonic eye comes from research by neurobiologist Greg Lemke and his colleagues at the Salk Institute for Biological Studies, published in the current issue of Genes & Development. The scientists carried out their work on the laboratory mouse as a model of human biology. "Our results suggest that the retina is effectively the default pathway for eye development in mammals," said Lemke. The Salk team showed that two chemical cues, or signalling proteins, must be present in the right place at the right time to shut down this default pathway and allow the optic nerve to develop.

The painstaking work of the Salk team has important consequences since controlling the fate of stem cells implanted into the brain is crucial if these cells are to be safely and effectively used in human therapy. "This study gives us a fascinating insight into how the parts of the brain are laid out because it is likely that the same model applies throughout the nervous system," said Lemke. "There are likely to be other brain areas whose development relies on blocking a tendency to turn into the same cell types as their neighbor."


Lemke and co-authors Stina H. Mui, Jin Woo Kim and Stefano Bertuzzi studied eye development in genetically engineered mouse embryos that lacked the two signalling proteins Vax1 and Vax2. The mice developed normally until approximately 10 days after conception, at which point they started to develop one large, folded sheet of retina, instead of a retina and an optic nerve. "We were fascinated by our results because they were so dramatic," said Lemke. "The layers of the retina were perfectly formed but the retina reached all the way to the brain and there was no optic nerve. In effect, without the restraining influence of Vax1 and Vax2 the brain had created one gigantic eye."

The Salk team then spent the next two years uncovering the mechanisms involved. "It’s fairly easy to describe the effect but it’s much tougher to explain what’s going on," said Mui.

Using complex gene expression techniques, the researchers painstakingly discovered that the fate of the eye is determined over the space of just a couple of days by a complex yet remarkably efficient system. The stem cells in the embryo destined to become the eye start out as identical. In response to external chemical messages, a gene called Pax6 is activated and becomes a powerful switch that tells these ’eye’ cells to start developing into the retina. If nothing happens to stop this process, all the ’eye’ cells will continue along this developmental path until one, huge retina is formed. However, this is normally prevented when the ’eye’ cells closest to the centre of the brain start to produce Vax1 and Vax2, which act as chemical brakes on Pax6. As a result, these cells turn into the optic nerve instead.

"Normally Pax6 is turned off in the ventral optic stalk to allow the optic nerve to develop," said Kim. "It’s an incredibly efficient way to control development because you don’t need a completely new pathway for a new structure."

"Pax 6 is a powerful and ancient gene for eye determination," noted Lemke. "It plays this role from fruit flies to humans. As a consequence, its expression must be highly regulated during development." Although the retina is obviously required for sight, Lemke points out that "it’s possible to have too much of a good thing."

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>