Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unrestrained retina too much of a good thing

18.05.2005


When primitive nerve cells begin forming an eye in the mouse embryo, they are programmed to build a retina. But the ability to see depends upon connecting the retina to the brain via the optic nerve. Unless these embryonic cells are given the right cue at the right time, they mistakenly form a huge eye that consists entirely of retina and lacks the optic nerve.



The discovery that the retina is the ’default’ setting for development in the embryonic eye comes from research by neurobiologist Greg Lemke and his colleagues at the Salk Institute for Biological Studies, published in the current issue of Genes & Development. The scientists carried out their work on the laboratory mouse as a model of human biology. "Our results suggest that the retina is effectively the default pathway for eye development in mammals," said Lemke. The Salk team showed that two chemical cues, or signalling proteins, must be present in the right place at the right time to shut down this default pathway and allow the optic nerve to develop.

The painstaking work of the Salk team has important consequences since controlling the fate of stem cells implanted into the brain is crucial if these cells are to be safely and effectively used in human therapy. "This study gives us a fascinating insight into how the parts of the brain are laid out because it is likely that the same model applies throughout the nervous system," said Lemke. "There are likely to be other brain areas whose development relies on blocking a tendency to turn into the same cell types as their neighbor."


Lemke and co-authors Stina H. Mui, Jin Woo Kim and Stefano Bertuzzi studied eye development in genetically engineered mouse embryos that lacked the two signalling proteins Vax1 and Vax2. The mice developed normally until approximately 10 days after conception, at which point they started to develop one large, folded sheet of retina, instead of a retina and an optic nerve. "We were fascinated by our results because they were so dramatic," said Lemke. "The layers of the retina were perfectly formed but the retina reached all the way to the brain and there was no optic nerve. In effect, without the restraining influence of Vax1 and Vax2 the brain had created one gigantic eye."

The Salk team then spent the next two years uncovering the mechanisms involved. "It’s fairly easy to describe the effect but it’s much tougher to explain what’s going on," said Mui.

Using complex gene expression techniques, the researchers painstakingly discovered that the fate of the eye is determined over the space of just a couple of days by a complex yet remarkably efficient system. The stem cells in the embryo destined to become the eye start out as identical. In response to external chemical messages, a gene called Pax6 is activated and becomes a powerful switch that tells these ’eye’ cells to start developing into the retina. If nothing happens to stop this process, all the ’eye’ cells will continue along this developmental path until one, huge retina is formed. However, this is normally prevented when the ’eye’ cells closest to the centre of the brain start to produce Vax1 and Vax2, which act as chemical brakes on Pax6. As a result, these cells turn into the optic nerve instead.

"Normally Pax6 is turned off in the ventral optic stalk to allow the optic nerve to develop," said Kim. "It’s an incredibly efficient way to control development because you don’t need a completely new pathway for a new structure."

"Pax 6 is a powerful and ancient gene for eye determination," noted Lemke. "It plays this role from fruit flies to humans. As a consequence, its expression must be highly regulated during development." Although the retina is obviously required for sight, Lemke points out that "it’s possible to have too much of a good thing."

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>