Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nutrition Gene Key in Regulating Immune System

18.05.2005


A gene that signals a yeast cell to make bread rise and mice to eat a better diet also helps selectively silence the immune system, researchers have found.



The finding may help explain how a mother avoids rejecting a genetically foreign fetus and provides a new target for treatments to help the immune system ignore other desirables like a transplanted organ. “Think of this like a radio transmitter and a receiver,” says Dr. David H. Munn, pediatric hematologist-oncologist at the Medical College of Georgia and lead author of the study in the May issue of Immunity.

The transmitter is indoleamine 2,3-dioxygenase, or IDO, an enzyme particularly expressed in places such as the gastrointestinal tract and tonsils where the immune system routinely meets up with foreign substances it might want to ignore. Drs. Munn, Andrew L. Mellor and Simon J. Conway published a Science article in 1998 showing IDO’s role in protecting the fetus from rejection by the mother’s immune system during pregnancy. Later they learned that tumors and persistent viruses such as HIV may hijack this mechanism to shield themselves from immune attack. They knew IDO degraded tryptophan, an amino acid essential to the survival of T cells. They weren’t so certain what happened at the receiving end.


The researchers wondered if T cells exposed to IDO might simply starve to death without enough trytophan, one of nine essential amino acids attainable only through food. “If the T cells are just starving, then you don’t need a receiver. They just die. But the T cells didn’t seem to be dying. They seemed to be rendered selectively non-responsive,” says Dr. Munn. “That sounded more like the T cell was participating in this process.”

So the researchers started looking at the few genes known to respond to amino acid levels and found GCN2. GCN2 is present and active in many cells, but its major sites of action are unknown and its role in T cells was unexplored, Dr. Munn says. “GCN2 is a nutrition sensor in yeast,” says Dr. Munn. GCN2 helps yeast know when it has sufficient nutrition to grow; bread keeps rising until yeast run out of nutrition. A paper published in March in Science explores GCN2’s role in mammalian survival by enabling mice to sense they need to eat a well-balanced diet to stay healthy.

Dr. Munn contacted Dr. David Ron, a professor of medicine and cellular biology at New York University School of Medicine’s Skirball Institute, studying the nutritional aspects of the gene. Dr. Ron, a co-author on the Immunity paper, shared a GCN2 knockout mouse he developed and helped the MCG researchers study the gene’s role in T cells. When these knockout mice were exposed to IDO, their T cells simply ignored it. The researchers had found a receiver and possibly more.

“No one had known any gene specifically targeted by IDO, and now we have one,” says Dr. Munn. “We had not known how T cells were turned off. We didn’t know if the T cells just were never activated, or if they were actively suppressed by IDO. They all look like resting T cells. Now we do know that there are differences.”

MCG researchers want to know more about how GCN2 puts T cells to sleep. “Whatever it’s doing doesn’t appear to be killing the T cells. It would be nice to be able to mimic the effect of IDO by using a drug that activates this pathway.” Now that they have a knockout, comparative studies with regular mice can determine other genes that might be impacted downstream of GCN2.

Another big question is whether T cells deactivated by this system can be reactivated. Knowing the role of the GCN2 gene makes it easier for scientists to watch what happens to the T cells affected by IDO in a living organism. “We know that IDO itself is an important pathway. Evidence is emerging that IDO seems to contribute to several important regulatory processes in the immune system,” Dr. Munn says of findings from labs across the country. “But there has been a question in the field about how the IDO expressed in one cell can signal to neighboring T cells. Here’s our first evidence of one way it may do so. By giving you a target in the T cell that IDO is talking to, it helps you understand the system better and we think it also may give us another target for drugs to try to intervene in the system.”

The studies were funded by the National Institutes of Health and the Carlos and Marguerite Mason Trust.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>