Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stegosaur plates and spikes for looks only

18.05.2005


Analysis of plate internal structure rules out thermoregulation

The bizarre plates and spikes that lined the backbones of the long-extinct stegosaurs were probably extreme examples of the often elaborate and colorful displays developed by animals to recognize fellow members of their species, according to an international team of paleontologists.

The team’s analysis of stegosaur plates lends support to a growing consensus among paleontologists that the weird adornments of many dinosaurs - the horns of triceratops, the helmet-like domes of the pachycephalosaurs, and the crests of the duck-billed hadrosaurs - likely served no function other than to differentiate species, akin to birds’ colorful feather ornamentation.



"Our studies of bone histology are telling us a lot about dinosaur social behavior and lifestyle," said Kevin Padian, professor of integrative biology at the University of California, Berkeley, and a curator in the campus’s Museum of Paleontology. "We cut up and compared the internal structures of stegosaur plates and the smaller scutes of their ancestors, and found that a functional explanation for these plates doesn’t make sense for all the stegosaurs. So we think that they’re more likely involved in some type of species recognition, as with many African antelopes - you have to be different from all animals in the area so you don’t get mixed up with other species."

"When people see bizarre structures, they always want to give them bizarre functions," said co-author Russell Main, a former UC Berkeley undergraduate now in graduate school in Harvard University’s Department of Organismic and Evolutionary Biology. "But in the case of stegosaurs or even ceratopsians, like triceratops, and also in modern bovids and some other artiodactyls, where you see a number of different types of horn or antler arrangements, you don’t necessarily need to apply functional explanations. They can be relatively easily explained by talking about species or mate recognition."

Padian, Main and coauthors John R. Horner of the Museum of the Rockies in Bozeman, Mont., and Armand de Ricqlès of the University of Paris report their analysis of dinosaur scutes and stegosaur plates in the spring issue of the journal Paleobiology, to be published later this month.

Stegosaurs were elephantine plant eaters that populated the world during the Jurassic period, about 210 to 144 million years ago, alongside ferocious predators like Allosaurus. Growing up to 20 feet from nose to tip of tail, the most recognized stegosaur, Stegosaurus stenops, had a double row of plates down the back with two or three pairs of spikes on the tail. Other stegosaurs had smaller plates, spikes instead of plates or some other combination. The thin plates and spikes, called scutes, were bony outgrowths of the skin, or osteoderms, and probably were covered with a horny keratin.

Previous paleontologists had proposed that the plates were like the ears of African elephants, designed for heat exchange. They would radiate heat on hot days to cool the animal, or absorb heat from the sun to warm the blood on cool days. Others suggested that they were for protection or for sexual display. In their paper, Padian, Main and their colleagues tend to reject each of these arguments as general explanations.

"These plates wouldn’t offer much protection - they consist of a layer of dense bone surrounding a latticework of bone that would be like biting through a sandwich," Padian said. "Plus, we don’t see a clear distinction between male and female stegosaurs. Without sexual dimorphism, you have no evidence for sexual selection, so you can’t invoke sexual display as an explanation."

As for heat exchange, one major reason earlier scientists proposed such a function for stegosaur plates is that these plates have large blood vessels piercing their interior, perhaps channels to carry blood to be cooled or heated. But it turns out that these "pipes" lead to dead ends, so their roles as major blood vessels are difficult to establish.

To probe the possibility that the plates and spikes were heat exchangers, the paleontologists looked at the evolution of these skin growths in the thyreophoran family, which included the stegosaurs. The team obtained fossils from a half-dozen different species of thyreophorans, ranging from the stegosaurs’ earliest ancestors - "armored" dinosaurs that lived 200 million years ago - to the first stegosaurs and related ankylosaurs - which had bony plates or scutes all over their bodies - to the last stegosaurs, which died out in the Early Cretaceous period more than 120 million years ago. All were plant eaters with formidable flat or erect plates on the neck, back and tail. The team sliced through about 10 fossil scutes to study their internal structure.

The earliest thyreophorans, such as the North American dinosaur Scutellosaurus, which measured about four feet from nose to tail, had small bony plates lying flat over their backs and tails, each with a slightly raised keel. These scutes, about a half-inch across, had an internal structure similar in some aspects to the much larger plates of the stegosaurs, yet were obviously useless in regulating the internal temperature of the animal, Main said. The same is true of the later Scelidosaurus, a 13-footer covered with larger scutes with bigger keels; the scutes had the same type of blood vasculature as stegosaur plates and spikes. Ankylosaurs, a sister group to the stegosaurs that survived into the late Cretaceous and went extinct with the rest of the dinosaurs 65 million years ago, had more diverse scutes and ossicles that nevertheless were plumbed in the same way as those on stegosaurs.

Based on this analysis, the team argued that it was unlikely that the larger plates that evolved in the stegosaur ancestors of Scutellosaurus and Scelidosaurus were used for heat exchange.

Padian and Main point out, too, that the horns or antlers of many living animals contain large vessels to supply blood needed for fast growth. None of these horns or antlers function as heat exchangers. A possible role of the large "pipes" in the scutes of stegosaurs and their ancestors was to carry the large blood supply needed for the fast growth that was thought to be typical of dinosaurs.

In addition, not all stegosaurs living at the end of the Jurassic had the big, flat plates of Stegosaurus stenops that most people associate with stegosaurs. Kentrosaurus of Africa and the Asian Huayangosaurus, which were about the same size as Stegosaurus, had mostly spikes with a few "dinky" plates, Main said. These spikes and small plates would have been useless for heat exchange.

"You get quite a large variety in the types of osteoderm arrangements in these animals, but they are not specialized in the way that one would expect if they were built specifically for a thermoregulatory function," he said. "What it looks like is the scutes simply show hypertrophic growth of the keel region, it’s simply a modification of an already existing growth pattern."

"There is a natural tendency that leads to elaborate displays for social group recognition, like the calls of birds," Padian said. "This underscores the importance of behavior to evolution."

De Ricqlès cautioned, however, that "an accessory role in thermoregulation cannot be ruled out for the Stegosaurus plates. Being so large, well vascularized (and available) they may have been inevitably exapted for such a function. This is so even if the primary explanation of their occurrence in an evolutionary context may be elsewhere: namely in some sort of ’display’ (mate or species recognition), as suggested by the comparative, phylogenetic, context of plates development among Stegosauria."

To investigate further whether the elaborate horny displays of stegosaurs and other dinosaurs are involved in sexual displays, Padian is going to South Africa in May and June to measure skulls and bodies of African antelopes to look at the range of sexual dimorphism. Such studies have never been done on a full range of African bovids, he noted. Meanwhile, Main at Harvard is studying bone growth and skeletal mechanics in animals such as goats and emus to see how they change with age.

"We know more about growth in some dinosaurs than we do about growth in large living mammals," Padian said.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>