Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create mouse model that develops a human-like lymphoma

17.05.2005


Findings demonstrate that abnormal expression of the BCL6 gene causes lymphoma



Researchers at Columbia University Medical Center have created the first mouse model that develops a lymphoma the same way that humans do. This advancement has the potential to significantly speed the development of new, improved therapies for diffuse large B cell lymphoma (DLBCL), the most common type of human B cell lymphoma. Human B cell lymphomas cause 85 percent of non-Hodgkin’s lymphomas, the sixth leading cause of cancer deaths in the United States.

The findings also confirm that a mutation in BCL6, the gene most frequently altered in this type of lymphoma, is the first step in its development, though other subsequent mutations also occur. In the study, mice with a mutant form of this gene spontaneously developed this lymphoma.


Cancer researchers have long been hindered by the lack of animal models to recreate both the genetics and biology of DLBCL. They had no way to test, with reliable accuracy, how an investigational therapy would work in humans with this disease. Also, this lack of animal models has slowed understanding of the BCL6 gene and its precise role in tumor development.

Published in the May 2005 issue of Cancer Cell, the study was led by Riccardo Dalla-Favera, M.D., one of the world’s leading cancer geneticists and lymphoma researchers. Dr. Dalla-Favera is director of the Herbert Irving Comprehensive Cancer Center (HICCC) at Columbia University Medical Center and NewYork-Presbyterian/Columbia. The HICCC is one of only three NIH-designated Comprehensive Cancer Centers in New York State. He is also director of the Institute for Cancer Genetics at Columbia University Medical center.

Dr. Dalla-Favera and his research team genetically engineered mice to produce a mutant BCL6 gene, showing the specific role of this gene in its pathogenesis and displaying most of the critical features of the corresponding human tumor. These findings expand on Dr. Dalla-Favera’s identification of the BCL6 gene in 1994.

"We are very optimistic that this new model for lymphoma will be a catalyst for new therapies for lymphoma; enabling researchers to first test new potential therapies in animals before humans," said Dr. Dalla-Favera, who is also the Percy and Joanne Uris Professor of Pathology and Professor of Genetics & Development at the Columbia University College of Physicians and Surgeons. "We are already using this new model to develop novel therapies targeted to BCL6, so these mice will be valuable in testing these lymphoma-specific compounds."

This mouse model can also be used to identify the additional genetic alterations that are necessary, in addition to BCL6, to develop diffuse large cell lymphoma.

Additional Columbia investigators associated with the Cancer Cell study include: Drs. Giorgio Cattoretti (Columbia’s Institute for Cancer Genetics and Department of Pathology), Laura Pasqualucci (Institute for Cancer Genetics and Department of Pathology), Subhadra V. Nandula (Department of Pathology), Qiong Shen (Institute for Cancer Genetics), Tongwei Mo (Institute for Cancer Genetics), Vundavalli V. Murty (Institute for Cancer Genetics and Department of Pathology), and Gianna Ballon and Wayne Tam (formerly at the Institute for Cancer Genetics, Columbia University, and presently at the Department of Pathology & Laboratory Medicine, Weill Medical College of Cornell University).

Elizabeth Streich | EurekAlert!
Further information:
http://www.cumc.columbia.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>