Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create mouse model that develops a human-like lymphoma

17.05.2005


Findings demonstrate that abnormal expression of the BCL6 gene causes lymphoma



Researchers at Columbia University Medical Center have created the first mouse model that develops a lymphoma the same way that humans do. This advancement has the potential to significantly speed the development of new, improved therapies for diffuse large B cell lymphoma (DLBCL), the most common type of human B cell lymphoma. Human B cell lymphomas cause 85 percent of non-Hodgkin’s lymphomas, the sixth leading cause of cancer deaths in the United States.

The findings also confirm that a mutation in BCL6, the gene most frequently altered in this type of lymphoma, is the first step in its development, though other subsequent mutations also occur. In the study, mice with a mutant form of this gene spontaneously developed this lymphoma.


Cancer researchers have long been hindered by the lack of animal models to recreate both the genetics and biology of DLBCL. They had no way to test, with reliable accuracy, how an investigational therapy would work in humans with this disease. Also, this lack of animal models has slowed understanding of the BCL6 gene and its precise role in tumor development.

Published in the May 2005 issue of Cancer Cell, the study was led by Riccardo Dalla-Favera, M.D., one of the world’s leading cancer geneticists and lymphoma researchers. Dr. Dalla-Favera is director of the Herbert Irving Comprehensive Cancer Center (HICCC) at Columbia University Medical Center and NewYork-Presbyterian/Columbia. The HICCC is one of only three NIH-designated Comprehensive Cancer Centers in New York State. He is also director of the Institute for Cancer Genetics at Columbia University Medical center.

Dr. Dalla-Favera and his research team genetically engineered mice to produce a mutant BCL6 gene, showing the specific role of this gene in its pathogenesis and displaying most of the critical features of the corresponding human tumor. These findings expand on Dr. Dalla-Favera’s identification of the BCL6 gene in 1994.

"We are very optimistic that this new model for lymphoma will be a catalyst for new therapies for lymphoma; enabling researchers to first test new potential therapies in animals before humans," said Dr. Dalla-Favera, who is also the Percy and Joanne Uris Professor of Pathology and Professor of Genetics & Development at the Columbia University College of Physicians and Surgeons. "We are already using this new model to develop novel therapies targeted to BCL6, so these mice will be valuable in testing these lymphoma-specific compounds."

This mouse model can also be used to identify the additional genetic alterations that are necessary, in addition to BCL6, to develop diffuse large cell lymphoma.

Additional Columbia investigators associated with the Cancer Cell study include: Drs. Giorgio Cattoretti (Columbia’s Institute for Cancer Genetics and Department of Pathology), Laura Pasqualucci (Institute for Cancer Genetics and Department of Pathology), Subhadra V. Nandula (Department of Pathology), Qiong Shen (Institute for Cancer Genetics), Tongwei Mo (Institute for Cancer Genetics), Vundavalli V. Murty (Institute for Cancer Genetics and Department of Pathology), and Gianna Ballon and Wayne Tam (formerly at the Institute for Cancer Genetics, Columbia University, and presently at the Department of Pathology & Laboratory Medicine, Weill Medical College of Cornell University).

Elizabeth Streich | EurekAlert!
Further information:
http://www.cumc.columbia.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>