Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create mouse model that develops a human-like lymphoma

17.05.2005


Findings demonstrate that abnormal expression of the BCL6 gene causes lymphoma



Researchers at Columbia University Medical Center have created the first mouse model that develops a lymphoma the same way that humans do. This advancement has the potential to significantly speed the development of new, improved therapies for diffuse large B cell lymphoma (DLBCL), the most common type of human B cell lymphoma. Human B cell lymphomas cause 85 percent of non-Hodgkin’s lymphomas, the sixth leading cause of cancer deaths in the United States.

The findings also confirm that a mutation in BCL6, the gene most frequently altered in this type of lymphoma, is the first step in its development, though other subsequent mutations also occur. In the study, mice with a mutant form of this gene spontaneously developed this lymphoma.


Cancer researchers have long been hindered by the lack of animal models to recreate both the genetics and biology of DLBCL. They had no way to test, with reliable accuracy, how an investigational therapy would work in humans with this disease. Also, this lack of animal models has slowed understanding of the BCL6 gene and its precise role in tumor development.

Published in the May 2005 issue of Cancer Cell, the study was led by Riccardo Dalla-Favera, M.D., one of the world’s leading cancer geneticists and lymphoma researchers. Dr. Dalla-Favera is director of the Herbert Irving Comprehensive Cancer Center (HICCC) at Columbia University Medical Center and NewYork-Presbyterian/Columbia. The HICCC is one of only three NIH-designated Comprehensive Cancer Centers in New York State. He is also director of the Institute for Cancer Genetics at Columbia University Medical center.

Dr. Dalla-Favera and his research team genetically engineered mice to produce a mutant BCL6 gene, showing the specific role of this gene in its pathogenesis and displaying most of the critical features of the corresponding human tumor. These findings expand on Dr. Dalla-Favera’s identification of the BCL6 gene in 1994.

"We are very optimistic that this new model for lymphoma will be a catalyst for new therapies for lymphoma; enabling researchers to first test new potential therapies in animals before humans," said Dr. Dalla-Favera, who is also the Percy and Joanne Uris Professor of Pathology and Professor of Genetics & Development at the Columbia University College of Physicians and Surgeons. "We are already using this new model to develop novel therapies targeted to BCL6, so these mice will be valuable in testing these lymphoma-specific compounds."

This mouse model can also be used to identify the additional genetic alterations that are necessary, in addition to BCL6, to develop diffuse large cell lymphoma.

Additional Columbia investigators associated with the Cancer Cell study include: Drs. Giorgio Cattoretti (Columbia’s Institute for Cancer Genetics and Department of Pathology), Laura Pasqualucci (Institute for Cancer Genetics and Department of Pathology), Subhadra V. Nandula (Department of Pathology), Qiong Shen (Institute for Cancer Genetics), Tongwei Mo (Institute for Cancer Genetics), Vundavalli V. Murty (Institute for Cancer Genetics and Department of Pathology), and Gianna Ballon and Wayne Tam (formerly at the Institute for Cancer Genetics, Columbia University, and presently at the Department of Pathology & Laboratory Medicine, Weill Medical College of Cornell University).

Elizabeth Streich | EurekAlert!
Further information:
http://www.cumc.columbia.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>