Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create mouse model that develops a human-like lymphoma

17.05.2005


Findings demonstrate that abnormal expression of the BCL6 gene causes lymphoma



Researchers at Columbia University Medical Center have created the first mouse model that develops a lymphoma the same way that humans do. This advancement has the potential to significantly speed the development of new, improved therapies for diffuse large B cell lymphoma (DLBCL), the most common type of human B cell lymphoma. Human B cell lymphomas cause 85 percent of non-Hodgkin’s lymphomas, the sixth leading cause of cancer deaths in the United States.

The findings also confirm that a mutation in BCL6, the gene most frequently altered in this type of lymphoma, is the first step in its development, though other subsequent mutations also occur. In the study, mice with a mutant form of this gene spontaneously developed this lymphoma.


Cancer researchers have long been hindered by the lack of animal models to recreate both the genetics and biology of DLBCL. They had no way to test, with reliable accuracy, how an investigational therapy would work in humans with this disease. Also, this lack of animal models has slowed understanding of the BCL6 gene and its precise role in tumor development.

Published in the May 2005 issue of Cancer Cell, the study was led by Riccardo Dalla-Favera, M.D., one of the world’s leading cancer geneticists and lymphoma researchers. Dr. Dalla-Favera is director of the Herbert Irving Comprehensive Cancer Center (HICCC) at Columbia University Medical Center and NewYork-Presbyterian/Columbia. The HICCC is one of only three NIH-designated Comprehensive Cancer Centers in New York State. He is also director of the Institute for Cancer Genetics at Columbia University Medical center.

Dr. Dalla-Favera and his research team genetically engineered mice to produce a mutant BCL6 gene, showing the specific role of this gene in its pathogenesis and displaying most of the critical features of the corresponding human tumor. These findings expand on Dr. Dalla-Favera’s identification of the BCL6 gene in 1994.

"We are very optimistic that this new model for lymphoma will be a catalyst for new therapies for lymphoma; enabling researchers to first test new potential therapies in animals before humans," said Dr. Dalla-Favera, who is also the Percy and Joanne Uris Professor of Pathology and Professor of Genetics & Development at the Columbia University College of Physicians and Surgeons. "We are already using this new model to develop novel therapies targeted to BCL6, so these mice will be valuable in testing these lymphoma-specific compounds."

This mouse model can also be used to identify the additional genetic alterations that are necessary, in addition to BCL6, to develop diffuse large cell lymphoma.

Additional Columbia investigators associated with the Cancer Cell study include: Drs. Giorgio Cattoretti (Columbia’s Institute for Cancer Genetics and Department of Pathology), Laura Pasqualucci (Institute for Cancer Genetics and Department of Pathology), Subhadra V. Nandula (Department of Pathology), Qiong Shen (Institute for Cancer Genetics), Tongwei Mo (Institute for Cancer Genetics), Vundavalli V. Murty (Institute for Cancer Genetics and Department of Pathology), and Gianna Ballon and Wayne Tam (formerly at the Institute for Cancer Genetics, Columbia University, and presently at the Department of Pathology & Laboratory Medicine, Weill Medical College of Cornell University).

Elizabeth Streich | EurekAlert!
Further information:
http://www.cumc.columbia.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>