Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibody combined with cancer drug shows promise against breast tumors

17.05.2005


An antibody that targets the blood vessels nourishing tumors significantly reduced breast cancer formation and growth in mice when combined with a current cancer drug, according to researchers at UT Southwestern Medical Center. Their work appears in today’s issue of Cancer Research.



"This antibody could enhance the therapeutic efficacy of the drug docetaxel in breast cancer patients," said Dr. Philip Thorpe, professor of pharmacology at UT Southwestern and senior author of the research. "The combination merits further scrutiny as a potential treatment for human cancer." Docetaxel is one of the most effective chemotherapeutic drugs for treating breast, ovarian and prostate cancer, but its use in treating other cancers is limited by its toxicity.

In their study of mice, Drs. Thorpe and Xianming Huang, assistant professor of pharmacology in the Harold C. Simmons Comprehensive Cancer Center, found the antibody compound 3G4 was effective as a vascular targeting agent (VTA) when used with docetaxel. VTAs are designed to find and destroy blood vessels within cancerous tumors, cutting off their blood supply.


Specifically, mice with human breast tumors treated with 3G4 and docetaxel had a 93 percent reduction in overall tumor growth. The injected breast cancer cells also stimulated the growth of tumor colonies in the lungs, and the drug combination reduced the average number of those colonies by 93 percent, with half of the mice not developing any lung tumors.

The combination of 3G4 and docetaxel was much better than either compound used by itself, Dr. Thorpe said. In mice with breast cancer tumors, growth was suppressed by 50 percent using 3G4 alone and 70 percent for docetaxal alone. The reduction in lung tumor colonies was 82 percent with 3G4 alone and 78 percent with docetaxal alone.

Peregrine Pharmaceuticals is developing a version of 3G4 called Tarvacin for cancer treatment and recently received approval from the Food and Drug Administration for a phase I clinical trial. The compound was discovered by Dr. Thorpe’s lab, and Peregrine has a sponsored research agreement with UT Southwestern to further develop the drug. "We are currently investigating whether the enhanced therapeutic efficacy with 3G4 and docetaxel extends to other tumor models and other conventional therapies," Dr. Thorpe said.

VTAs like 3G4 target tumor vessels by selectively binding to a certain component in the membranes of endothelial cells that line tumor blood vessels. This component, called an anionic phospholipid, faces the interior of cells in normal blood vessels. In tumor blood vessels, however, changes in the tumor environment cause the phospholipid to flip inside out and be positioned on the external surface. VTAs then can bind to this exposed phospholipid, causing the body’s white cells to attack and destroy the vessels feeding the tumor.

By targeting receptors unique to tumor vessels, vascular targeting agents kill tumors without causing damage to surrounding healthy tissue. They also reduce the risk of side effects by operating at lower doses than traditional cancer therapies because they are effective without needing to penetrate the innermost layer of a tumor.

And, while drug resistance caused by the instability and mutability of cancer cells is a significant problem with conventional therapies that target tumor cells, cells targeted by VTAs do not mutate to become drug resistant, Dr. Thorpe said.

Tarvacin itself has shown promise in mice against cancers in the fibrous tissues, brain cancers and Hodgkin’s disease.

Mary Bennett, a UT Southwestern technician, also contributed to the Cancer Research study.

Toni Heinzl | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>