Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify genes responsible for ’black rot’ disease in vegetables

17.05.2005


Large-scale comparative and functional genomics study characterizes bacterial pathogen responsible for major vegetable crop losses worldwide

Scientists at four major genomics and plant pathology laboratories in China have collaborated on a project to characterize the causative agent of "black rot" disease, which is the most serious disease of vegetable crops worldwide. Their study, which represents the largest comparative and functional genomics screen for a plant or animal bacterial pathogen to date, is published online today in the journal Genome Research.

"Black rot" is caused by the pathogenic bacterium Xanthomonas campestris pathovar campestris (or Xcc). Under favorable conditions (high humidity and temperature), Xcc infects vegetable crops by spreading through the plants’ vascular tissues, turning the veins in their leaves yellow and black, and causing V-shaped lesions along the margins of the leaves. All vegetables in the crucifer family, including broccoli, Brussels sprouts, cabbage, cauliflower, kale, mustard, radish, rutabaga, and turnip, are potential hosts for Xcc. The model plant Arabidopsis thaliana is also susceptible to Xcc infection. Surprisingly, however, some wild cruciferous weed species do not manifest the characteristic symptoms of "black rot" disease when infected.



To date, there is no effective treatment for Xcc infection, so in hopes of developing a treatment, scientists at four Chinese institutions (the Institute of Microbiology at the Chinese Academy of Sciences, the Chinese National Human Genome Center at Shanghai, Guangxi University, and the Chinese National Human Genome Center at Beijing) have focused their efforts on characterizing the genes responsible for Xcc pathogenicity. In their study published today, the investigators describe the identification of 75 different genes responsible for Xcc virulence. These genes appear to belong to 13 different functional categories or related metabolic pathways. The researchers hope that the molecular characterization of these pathogenicity-related genes will lead to the development of a treatment for "black rot" disease.

Employing whole-genome comparative genomic approaches, the authors sequenced the complete genome of an Xcc strain that was isolated from an infected cauliflower plant in England during the 1950’s. They then compared this sequence to a previously published sequence from a cabbage-derived Xcc strain. Although the gene content of the two strains was very similar, the authors identified several genes located on strain-specific chromosomal elements that were unique to each strain. In addition, there were dramatic differences in the genomic arrangement of the two strains; the scientists identified significant rearrangements between the genomes, including major translocations, inversions, insertions, and deletions.

In order to functionally characterize Xcc and identify genes implicated in its pathogenicity, the researchers then screened an Xcc transposon insertional mutant library in its host plant (cabbage). They screened a total of 16,512 Xcc mutants on individual cabbage plants and, of these, 172 proved to be non-pathogenic. Upon further characterization of the 172 non-pathogenic mutants, the researchers came up with a non-redundant list of 75 genes or non-coding regions that are involved in Xcc pathogenicity.

Interestingly, the researchers identified three genes that were implicated in pathogenicity but that were not present in the previously described Xcc genomic sequence. To test the biological implications of this observation, they inoculated five different vegetable species with the three mutants corresponding to these strain-specific genes, and they observed significant differences in the response of each host species to infection. The authors point out that these findings highlight the role of genome dynamics in the evolution of pathogenicity in Xcc in response to different host species.

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>