Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify genes responsible for ’black rot’ disease in vegetables

17.05.2005


Large-scale comparative and functional genomics study characterizes bacterial pathogen responsible for major vegetable crop losses worldwide

Scientists at four major genomics and plant pathology laboratories in China have collaborated on a project to characterize the causative agent of "black rot" disease, which is the most serious disease of vegetable crops worldwide. Their study, which represents the largest comparative and functional genomics screen for a plant or animal bacterial pathogen to date, is published online today in the journal Genome Research.

"Black rot" is caused by the pathogenic bacterium Xanthomonas campestris pathovar campestris (or Xcc). Under favorable conditions (high humidity and temperature), Xcc infects vegetable crops by spreading through the plants’ vascular tissues, turning the veins in their leaves yellow and black, and causing V-shaped lesions along the margins of the leaves. All vegetables in the crucifer family, including broccoli, Brussels sprouts, cabbage, cauliflower, kale, mustard, radish, rutabaga, and turnip, are potential hosts for Xcc. The model plant Arabidopsis thaliana is also susceptible to Xcc infection. Surprisingly, however, some wild cruciferous weed species do not manifest the characteristic symptoms of "black rot" disease when infected.



To date, there is no effective treatment for Xcc infection, so in hopes of developing a treatment, scientists at four Chinese institutions (the Institute of Microbiology at the Chinese Academy of Sciences, the Chinese National Human Genome Center at Shanghai, Guangxi University, and the Chinese National Human Genome Center at Beijing) have focused their efforts on characterizing the genes responsible for Xcc pathogenicity. In their study published today, the investigators describe the identification of 75 different genes responsible for Xcc virulence. These genes appear to belong to 13 different functional categories or related metabolic pathways. The researchers hope that the molecular characterization of these pathogenicity-related genes will lead to the development of a treatment for "black rot" disease.

Employing whole-genome comparative genomic approaches, the authors sequenced the complete genome of an Xcc strain that was isolated from an infected cauliflower plant in England during the 1950’s. They then compared this sequence to a previously published sequence from a cabbage-derived Xcc strain. Although the gene content of the two strains was very similar, the authors identified several genes located on strain-specific chromosomal elements that were unique to each strain. In addition, there were dramatic differences in the genomic arrangement of the two strains; the scientists identified significant rearrangements between the genomes, including major translocations, inversions, insertions, and deletions.

In order to functionally characterize Xcc and identify genes implicated in its pathogenicity, the researchers then screened an Xcc transposon insertional mutant library in its host plant (cabbage). They screened a total of 16,512 Xcc mutants on individual cabbage plants and, of these, 172 proved to be non-pathogenic. Upon further characterization of the 172 non-pathogenic mutants, the researchers came up with a non-redundant list of 75 genes or non-coding regions that are involved in Xcc pathogenicity.

Interestingly, the researchers identified three genes that were implicated in pathogenicity but that were not present in the previously described Xcc genomic sequence. To test the biological implications of this observation, they inoculated five different vegetable species with the three mutants corresponding to these strain-specific genes, and they observed significant differences in the response of each host species to infection. The authors point out that these findings highlight the role of genome dynamics in the evolution of pathogenicity in Xcc in response to different host species.

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>