Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new prognostic tool for gastric carcinomas? (and maybe other cancers)

17.05.2005


A new way to identify gastric carcinoma patients with high probability of develop a more aggressive form of disease has just been described on the latest issue of the journal Glycobiology.



Researchers have found that the peptide sequence* of mucins - a group of proteins expressed by epithelial cells -seemed to be directly associated with the expression of tumour markers linked to very severe gastric carcinomas. Because peptide sequences are genetically determined, not only this discovery can allow doctors to predict which gastric carcinoma patients are more at risk, but also, one day, might help to predict the illness even before the appearance of signs. Furthermore, mucins are not limited to gastric carcinomas but are also found in a multitude of other cancers what makes the discovery even more exciting.

Mucins are large glycosylated (meaning that they have several sugars attached) proteins found on various epithelial cells around the body. These proteins perform several important functions from acting as molecular barriers, protecting epithelial cells from adverse environments, to the reception and coordination of signals involved in growth, differentiation, proliferation and even cellular death. Interestingly, mucins are also believed to participate in tumour development including the formation of metastasis, which are responsible for disease spread. In fact, during cancer, the expression and number of mucins increases, while their glycosylation suffer aberrant changes that lead to the uncovering of previously hidden structures - named tumour-associated carbohydrate antigens or TACAs – which seem to be directly involved in cancer progression. The most common TACAs described are Tn, sialyl-Tn, and T (Thomsen-Friedenreich), and analysis of their expression in cancerous cells is helping scientists characterising tumour as the antibodies against TACAs, already widely used as diagnostic tools to several types of cancers, prove.


Filipe Santos-Silva, Ana Fonseca, Michael Anthony Hollingsworth and colleagues from the University of Porto, Portugal and the University of Nebraska Medical Center, USA while trying to understand, in gastric carcinomas, the mechanism behind TACAs expression (and consequently behind cancer development) decided to analyse the peptide sequences of MUC1, a mucin commonly found altered in this type of cancer, trying to see if these could be correlated with disease prognosis. It is known that “normal” glycosylation in mucins is determined by their peptide sequence and the team of scientists hypothesized, that maybe MUC1 aberrant glycosylation in cancerous cells and subsequent TACAs’ expression, could be traced back to the same reason (changes in a particular peptide sequence).

Santos-Silva, Fonseca, Holingsworth and colleagues studied cells from 77 gastric carcinoma patients and found that the length of certain peptides sequences found in MUC1 were in fact directly associated with Thomsen-Friedenreich tumour marker expression. High levels of this tumour marker correlate, in gastric carcinomas, with the most aggressive cases of disease, and to be able to identify higher risk individuals can be crucial to their chances of survival. In order to confirm these results gastric carcinoma cells were manipulated into express MUC1 with different peptide lengths, and again, it was possible to identify which lengths of specific peptide sequences resulted in high levels of Thomsen-Friedenreich tumour marker.

Santos-Silva, Fonseca, Holingsworth and colleagues’ work seems to show that the expression of molecules involved in cancer development (the TACAs) is genetically determined which opens the door for the identification of individual predispositions to, in the case of gastric carcinomas, more severe cases of disease. These results, although extremely preliminary, are nevertheless very interesting as altered mucins can be found in most cancers and to be able to predict TACAs expression by peptide length can be a crucial tool for early prognosis.

Gastric carcinoma or cancer of the stomach is the second commonest cause of cancer deaths world wide, behind only to lung cancer. Prognosis is generally very poor with only 5% of the patients surviving more than 5 years. Although the disease is less frequent in the western world, in the UK alone, this cancer kills 7,000 people per year, a number that clearly shows what serious health problem the disease is and how important new methods for early prognosis can be.

Catarina Amorim | alfa
Further information:
http://glycob.oupjournals.org/cgi/content/abstract/15/5/511

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>