Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tamoxifen-like drug suggests new ways to selectively block estrogen

13.05.2005


The ability of an experimental drug known as GW5638 to change the shape of the estrogen receptor is helping researchers understand why drugs like tamoxifen and raloxifene behave the way they do, simulating the effects of estrogen in some tissues and blocking it in others. The finding indicates that this little-known drug may play an important role in preventing, as well as treating, breast cancer and suggests ways to design new drugs with even more specific effects.



In the May 13, 2005, issue of Molecular Cell, researchers from the University of Chicago, Renz Research, Inc., Duke University and GlaxoSmithKline show how GW5638 fits into a pocket in the estrogen receptor in a way that differs slightly, but importantly, from how tamoxifen fits. The slight difference changes the shape of the receptor in ways that alter its effects on the numerous coregulatory proteins that interact with it.

"We found a small, but significant, change in conformation that goes a long way towards explaining why these drugs have different effects in different tissues," said Geoffrey Greene, Ph.D., professor in the Ben May Institute for Cancer Research at the University of Chicago.


"This type of information should help us design drugs that produce even more specific outcomes. In particular, we could design new small molecules that would be more effective than tamoxifen or raloxifene at preventing breast cancer, heart disease and bone loss without increasing the risk of endometrial cancer."

Tamoxifen and raloxifene are the best-known members of a class of drugs known as specific estrogen receptor modulators or SERMs. These drugs mimic some effects of estrogen and block others. For example, tamoxifen blocks the effects of estrogen in the breast and thus is widely used to treat and prevent breast cancers that depend on estrogen. But it has the opposite effect in the uterus, acting like estrogen to stimulate tissue growth and increasing the risk of uterine cancer.

A newer group of drugs, known as selective estrogen receptor down-regulators, or SERDs, have a more potent anti-estrogen effect, involving destabilization of the estrogen receptor, which leads to its degradation.

GW5638 fits somewhere in the middle, acting like a SERM in some tissues and more like a SERD in others, including mammary tissue, where it is a powerful estrogen antagonist. As a consequence, GW 5638 can inhibit the growth of breast cancers that have become resistant to tamoxifen. It may also be more effective than tamoxifen at preventing cancer in women at high risk.

Equally important was learning how the very slight difference between tamoxifen and GW5638 altered the interactions between the estrogen receptor and other molecules that are regulated by the estrogen receptor.

Estrogen, tamoxifen and GW5638 all bind to the estrogen receptor in the same "pocket," but after binding they change the shape, or conformation, of the receptor in different ways. GW5638 pushes one small part of the estrogen receptor, a peptide spiral called helix 12, out of place. By shifting helix 12 to an odd spot, GW5638 disrupts the ways in which several other molecules that normally interact with the estrogen receptor go about their jobs.

These molecules, called coactivators or corepressors, can enhance or repress the effects of estrogen. They are present at different levels in different tissues.

"H12 positioning is essential for these interactions," Greene said. "By changing the conformation of the estrogen receptor, this drug changes the way it interacts with a whole series of related downstream molecules. And those interactions explain why these drugs have different effects in different locations, such as breast, bone or uterus."

This finding opens a new arena for drug design, suggests Greene. Nuclear receptors, such as the estrogen receptor, are major drug targets, accounting for more than 20 percent of all drugs. This finding suggests "we could move beyond ’designer estrogens,’ to all sorts of small molecules that mimic the actions of various hormones," Greene said. "We could create designer androgens for prostate cancer, or designer glucocorticoids to treat inflammation."

Since "the primary regulator of cofactor recruitment is receptor conformation," added study co-author Donald McDonnell of Duke, findings such as this should lead to the emergence of "a new wave of estrogen receptor modulators with improved specificity. We are moving, he said, "very close to the day where a proteomic profile of a tumor will determine the best SERM or SERD or other endocrine therapy that will yield maximal benefit in the clinic."

New tools such as the Advanced Photon Source at Argonne National Laboratories are making this sort of once-grandiose plan more realistic, Greene said. "We used to solve the structures of one or two molecules a year. Now we have 40 to 50 in progress."

GW5638 was developed as a variation on tamoxifen in the early 1990s by co-author Tim Willson and colleagues at what was then Glaxo Wellcome, hence the name GW5638. McDonnell, at Duke, recognized its potential and demonstrated efficacy in animal models of tamoxifen-resistant breast cancer. The drug has completed initial phase I clinical testing and has garnered significant interest from the pharmaceutical industry.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>