Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tamoxifen-like drug suggests new ways to selectively block estrogen

13.05.2005


The ability of an experimental drug known as GW5638 to change the shape of the estrogen receptor is helping researchers understand why drugs like tamoxifen and raloxifene behave the way they do, simulating the effects of estrogen in some tissues and blocking it in others. The finding indicates that this little-known drug may play an important role in preventing, as well as treating, breast cancer and suggests ways to design new drugs with even more specific effects.



In the May 13, 2005, issue of Molecular Cell, researchers from the University of Chicago, Renz Research, Inc., Duke University and GlaxoSmithKline show how GW5638 fits into a pocket in the estrogen receptor in a way that differs slightly, but importantly, from how tamoxifen fits. The slight difference changes the shape of the receptor in ways that alter its effects on the numerous coregulatory proteins that interact with it.

"We found a small, but significant, change in conformation that goes a long way towards explaining why these drugs have different effects in different tissues," said Geoffrey Greene, Ph.D., professor in the Ben May Institute for Cancer Research at the University of Chicago.


"This type of information should help us design drugs that produce even more specific outcomes. In particular, we could design new small molecules that would be more effective than tamoxifen or raloxifene at preventing breast cancer, heart disease and bone loss without increasing the risk of endometrial cancer."

Tamoxifen and raloxifene are the best-known members of a class of drugs known as specific estrogen receptor modulators or SERMs. These drugs mimic some effects of estrogen and block others. For example, tamoxifen blocks the effects of estrogen in the breast and thus is widely used to treat and prevent breast cancers that depend on estrogen. But it has the opposite effect in the uterus, acting like estrogen to stimulate tissue growth and increasing the risk of uterine cancer.

A newer group of drugs, known as selective estrogen receptor down-regulators, or SERDs, have a more potent anti-estrogen effect, involving destabilization of the estrogen receptor, which leads to its degradation.

GW5638 fits somewhere in the middle, acting like a SERM in some tissues and more like a SERD in others, including mammary tissue, where it is a powerful estrogen antagonist. As a consequence, GW 5638 can inhibit the growth of breast cancers that have become resistant to tamoxifen. It may also be more effective than tamoxifen at preventing cancer in women at high risk.

Equally important was learning how the very slight difference between tamoxifen and GW5638 altered the interactions between the estrogen receptor and other molecules that are regulated by the estrogen receptor.

Estrogen, tamoxifen and GW5638 all bind to the estrogen receptor in the same "pocket," but after binding they change the shape, or conformation, of the receptor in different ways. GW5638 pushes one small part of the estrogen receptor, a peptide spiral called helix 12, out of place. By shifting helix 12 to an odd spot, GW5638 disrupts the ways in which several other molecules that normally interact with the estrogen receptor go about their jobs.

These molecules, called coactivators or corepressors, can enhance or repress the effects of estrogen. They are present at different levels in different tissues.

"H12 positioning is essential for these interactions," Greene said. "By changing the conformation of the estrogen receptor, this drug changes the way it interacts with a whole series of related downstream molecules. And those interactions explain why these drugs have different effects in different locations, such as breast, bone or uterus."

This finding opens a new arena for drug design, suggests Greene. Nuclear receptors, such as the estrogen receptor, are major drug targets, accounting for more than 20 percent of all drugs. This finding suggests "we could move beyond ’designer estrogens,’ to all sorts of small molecules that mimic the actions of various hormones," Greene said. "We could create designer androgens for prostate cancer, or designer glucocorticoids to treat inflammation."

Since "the primary regulator of cofactor recruitment is receptor conformation," added study co-author Donald McDonnell of Duke, findings such as this should lead to the emergence of "a new wave of estrogen receptor modulators with improved specificity. We are moving, he said, "very close to the day where a proteomic profile of a tumor will determine the best SERM or SERD or other endocrine therapy that will yield maximal benefit in the clinic."

New tools such as the Advanced Photon Source at Argonne National Laboratories are making this sort of once-grandiose plan more realistic, Greene said. "We used to solve the structures of one or two molecules a year. Now we have 40 to 50 in progress."

GW5638 was developed as a variation on tamoxifen in the early 1990s by co-author Tim Willson and colleagues at what was then Glaxo Wellcome, hence the name GW5638. McDonnell, at Duke, recognized its potential and demonstrated efficacy in animal models of tamoxifen-resistant breast cancer. The drug has completed initial phase I clinical testing and has garnered significant interest from the pharmaceutical industry.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>