Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tamoxifen-like drug suggests new ways to selectively block estrogen

13.05.2005


The ability of an experimental drug known as GW5638 to change the shape of the estrogen receptor is helping researchers understand why drugs like tamoxifen and raloxifene behave the way they do, simulating the effects of estrogen in some tissues and blocking it in others. The finding indicates that this little-known drug may play an important role in preventing, as well as treating, breast cancer and suggests ways to design new drugs with even more specific effects.



In the May 13, 2005, issue of Molecular Cell, researchers from the University of Chicago, Renz Research, Inc., Duke University and GlaxoSmithKline show how GW5638 fits into a pocket in the estrogen receptor in a way that differs slightly, but importantly, from how tamoxifen fits. The slight difference changes the shape of the receptor in ways that alter its effects on the numerous coregulatory proteins that interact with it.

"We found a small, but significant, change in conformation that goes a long way towards explaining why these drugs have different effects in different tissues," said Geoffrey Greene, Ph.D., professor in the Ben May Institute for Cancer Research at the University of Chicago.


"This type of information should help us design drugs that produce even more specific outcomes. In particular, we could design new small molecules that would be more effective than tamoxifen or raloxifene at preventing breast cancer, heart disease and bone loss without increasing the risk of endometrial cancer."

Tamoxifen and raloxifene are the best-known members of a class of drugs known as specific estrogen receptor modulators or SERMs. These drugs mimic some effects of estrogen and block others. For example, tamoxifen blocks the effects of estrogen in the breast and thus is widely used to treat and prevent breast cancers that depend on estrogen. But it has the opposite effect in the uterus, acting like estrogen to stimulate tissue growth and increasing the risk of uterine cancer.

A newer group of drugs, known as selective estrogen receptor down-regulators, or SERDs, have a more potent anti-estrogen effect, involving destabilization of the estrogen receptor, which leads to its degradation.

GW5638 fits somewhere in the middle, acting like a SERM in some tissues and more like a SERD in others, including mammary tissue, where it is a powerful estrogen antagonist. As a consequence, GW 5638 can inhibit the growth of breast cancers that have become resistant to tamoxifen. It may also be more effective than tamoxifen at preventing cancer in women at high risk.

Equally important was learning how the very slight difference between tamoxifen and GW5638 altered the interactions between the estrogen receptor and other molecules that are regulated by the estrogen receptor.

Estrogen, tamoxifen and GW5638 all bind to the estrogen receptor in the same "pocket," but after binding they change the shape, or conformation, of the receptor in different ways. GW5638 pushes one small part of the estrogen receptor, a peptide spiral called helix 12, out of place. By shifting helix 12 to an odd spot, GW5638 disrupts the ways in which several other molecules that normally interact with the estrogen receptor go about their jobs.

These molecules, called coactivators or corepressors, can enhance or repress the effects of estrogen. They are present at different levels in different tissues.

"H12 positioning is essential for these interactions," Greene said. "By changing the conformation of the estrogen receptor, this drug changes the way it interacts with a whole series of related downstream molecules. And those interactions explain why these drugs have different effects in different locations, such as breast, bone or uterus."

This finding opens a new arena for drug design, suggests Greene. Nuclear receptors, such as the estrogen receptor, are major drug targets, accounting for more than 20 percent of all drugs. This finding suggests "we could move beyond ’designer estrogens,’ to all sorts of small molecules that mimic the actions of various hormones," Greene said. "We could create designer androgens for prostate cancer, or designer glucocorticoids to treat inflammation."

Since "the primary regulator of cofactor recruitment is receptor conformation," added study co-author Donald McDonnell of Duke, findings such as this should lead to the emergence of "a new wave of estrogen receptor modulators with improved specificity. We are moving, he said, "very close to the day where a proteomic profile of a tumor will determine the best SERM or SERD or other endocrine therapy that will yield maximal benefit in the clinic."

New tools such as the Advanced Photon Source at Argonne National Laboratories are making this sort of once-grandiose plan more realistic, Greene said. "We used to solve the structures of one or two molecules a year. Now we have 40 to 50 in progress."

GW5638 was developed as a variation on tamoxifen in the early 1990s by co-author Tim Willson and colleagues at what was then Glaxo Wellcome, hence the name GW5638. McDonnell, at Duke, recognized its potential and demonstrated efficacy in animal models of tamoxifen-resistant breast cancer. The drug has completed initial phase I clinical testing and has garnered significant interest from the pharmaceutical industry.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>