Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified enzyme group converts protein into cellular traffic signal

13.05.2005


An international research team has identified a new group of enzymes that may help uncover how cells direct internal traffic. The discovery has future implications for conditions -- such as polycystic kidney disease, male infertility, behavioral disorders and cancer -- that involve defects in protein fibers called microtubules. The findings will be published in the online journal Science Express on May 12, 2005.



The team was co-led by Jacek Gaertig, associate professor of cellular biology at UGA, and Bernard Eddé of National Center for Scientific Research (CNRS) in France.

Cells have an internal highway system made of fibers called microtubules. Specialized motor proteins slide along these fibers, carrying organelles and other materials to the places they need to go. But how do motor proteins know where to take their cargoes?


The researchers identified a new enzyme group that attaches an unusual molecular tag to a component of the cell’s microtubular highway system. The tag is attached to a localized region of a microtubule and may act like a road sign on the Interstate, directing motor proteins to take the "proper exit" to the nucleus or the cell membrane.

"We’ve known for more than a decade that strings of glutamic acid (an amino acid) are sometimes attached to the side of a protein called tubulin," said Gaertig, one of the senior co-authors on the paper. Tubulin is a component of microtubules. "This modification occurs in all cells but is abundant in neurons in the brain."

Few other proteins are modified in this way. But investigating what the modification does and how it works has been difficult until now.

The authors have identified a new group of enzymes -- called polyglutamylases -- that attach glutamic acid chains of varying length and branching patterns.

Because the enzyme complex is active only for a short window during development in mice, it took a "biochemical tour de force" by collaborators in France to purify it.

In Gaertig’s group, doctoral student Krzysztof Rogowski then identified the enzyme complex’s active subunit and postdoctoral associate Dorota Wloga found genes for these enzymes in many organisms including humans. The researchers also showed that these enzymes can modify just a portion of a microtubular highway, an important discovery that suggests the mechanism for directing cell traffic. The lab studied polyglutamylases from the unicellular pond protist Tetrahymena, a model organism that has abundant modified microtubules and shares many of the same properties of internal cell traffic as animal cells.

"Although it has been known for some time that polyglutamylation occurs, the function of these glutamic acid chains on microtubules have, until now, remained completely obscure," Eve Ida Barak, a program director for the National Science Foundation, said in an email.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>