Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence of 600-million-year old fungi-algae symbiosis discovered in marine fossils

13.05.2005


Is there an evolutionary relationship to land-based lichens?



Researchers from China and the United States have found evidence of lichen-like symbiosis in 600-million-year-old fossils from South China. The previous earliest evidence of lichen was 400 million years old, discovered in Scotland. The discovery also adds to the scarce fossil record of fungi and raises new questions about lichen evolution.

Xunlai Yuan, a paleontologist with the Nanjing Institute of Geology and Palaeontology; Shuhai Xiao, assistant professor of geosciences at Virginia Tech; and Thomas N. Taylor, professor of ecology and evolutionary biology at the University of Kansas, report their finding in the May 13 issue of Science ("Lichen-Like Symbiosis 600 Million Years Ago").


Yuan, Xiao, and their collaborators have been exploring the Doushantuo Formation in South China for a decade and have co-authored numerous reports of fossil discoveries, including algae and animal embryos. Taylor, a member of the National Academy of Sciences, is a paleobotanist who has reported on fossil lichens in Scotland.

Lichen is a consortium of two organisms that collaborate to survive in a harsh environment, such as exposed rock. One partner, a cyanobacterium or a photosynthetic alga, or both, are able to form food from carbon dioxide, while the other partner, a fungus, provides moisture, nutrients, and protection for the consortium.

"When and where did they first learn the tricks to form this collaboration?" Xiao asked. "The earliest lichen fossils described by Professor Taylor were from non-marine deposits about 400 million years old, when plants began to massively colonize the land. But did cyanobacteria or other algae form similar relationships with fungi in the marine environment, perhaps long before the evolution of land plants?"

Present-day examples of such relationships in the sea are abundant. Now, there is an example from ancient ocean life.

At a site where abundant algae lived in a shallow sub-tidal environment about 600 million years ago, Yuan and Xiao found three specimens that have evidence of two partners in a familiar relationship. "Enlargements of thin-section photomicrographs of the tiny specimens -- each of which was less than a millimeter in size -- show fossils of coccoidal or spherical cells surrounded by a net of fine filaments," Yuan said, describing the new fossils.

The scientists interpret the coccoidal cells as being sheathed cyanobacteria or possibly green algae. "The filaments have reproductive characteristics that make us think they are fungi," Xiao said.

Taylor said, "Clearly, there are two kinds of organisms living together and, we believe, interacting in more than a chance association."

In modern lichens and in the 400-million-year-old Scotland fossils, the coccoidal cells provide the nutrients and the fungal filaments provide protection against dehydration. But in the marine environment, dehydration is not an issue and the 600-million-year-old rocks also contain many fossils of coccoidal cells that are not surrounded by filaments. "So it is a loose lichen-like association," said Xiao. "The organisms are not obliged to live together."

Now there is a new question. "We know that this symbiotic relationship was forged 600 million years ago or earlier. But, was it carried over to land, or did each organism invade land and forge a new relationship independent of the marine relationship? If the latter, then the 600-million-year-old relationship may not be the direct ancestor of the 400-million-year-old relationship," Xiao said.

Fungi and algae in modern lichens can easily marry and divorce, he said. "Given the ease with which the symbiotic relationship is formed, I wouldn’t be surprised if the land-based relationships formed independently of the older marine relationships." "In fact, studies of modern lichens demonstrate that the lichen symbiosis evolved many times," Taylor said.

"The ability to form a symbiotic relationship between fungi and algae may have evolved long before the colonization of land by land-based lichens and green plants, which also form symbiotic relationships with various fungi," Xiao said.

"The Doushantuo Formation opens a window into ancient marine life. There is a lot more remains to be learned from these rocks," Yuan added.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>