Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High fidelity keeps human DNA assembly line humming

13.05.2005


Turns out building cars and building life have a lot in common – it all comes down to quality control.



Scientists at Michigan State University have made a major discovery on the inner workings of genetic coding, mapping out mechanisms of one of life’s most elemental functions: RNA synthesis. Their work has crucial implications for how a normal cell forms a tumor and how a virus runs amok. The work is published in the May 13 edition of the scientific journal Molecular Cell.

Behind the basic research is a story that melds exquisite nanotechnology in living systems and cutting-edge biochemistry and molecular biology with a system of checks and balances. "RNA synthesis is at the hub of human genetic control. It’s important for understanding cancers, viral infections and normal human development," said Zachary Burton, professor of biochemistry and molecular biology. "If you want to understand and control things like viral infections and tumors this fundamental process has to be understood in every detail. This is basic science, but basic science with practical application."


Burton and his team study how RNA is made from a DNA template. DNA is the genetic material that holds the blueprint for life. DNA dictates orders to RNA to make proteins, which give a cell its identity. Mistakes in RNA synthesis can lead to cancer or can support the life cycle of an invading virus. Researchers consider control of RNA synthesis to be a huge issue in human health. It is also the foundation of how living systems function.

In the world of molecular biology, much attention has been given to how RNA is made. Burton explains that it is similar to an industrial assembly line, with DNA being a conveyer belt to load building blocks, or bases, called nucleoside triphosphates (NTPs) to hook up with a growing strand of RNA.

Burton’s insight was to discover that the NTP bases preload to the DNA template several steps before they are added to the growing RNA chain.

This idea contradicts the prevalent view of how RNA and NTP bases hook up. Preloading of NTPs hints at a previously unknown quality control station to maintain accuracy of RNA synthesis. If an NTP doesn’t match up properly with DNA, the system stalls – and even backs up to correct the error. "We’re able to show how an error will be sensed and corrected," Burton said. "The quality control system checks NTP loading several ways. If it doesn’t match the criteria, it gets booted out."

In addition to better understanding how errors are prevented, Burton’s research team also learned ways errors are corrected during rapid RNA synthesis. To learn about error correction, Burton’s team stalled the DNA conveyer belt. They did this using a deadly mushroom toxin, alpha-amanitin.

Alpha-amanitin is the poison of the death cap mushroom, which can be deadly to humans. In 54 A.D., Emperor Tiberius Claudius was fed a death cap mushroom by his wife Agrippina to put her son Nero on the throne of ancient Rome. Alpha-amanitin kills people by stalling movement of the DNA conveyer belt.

Finding evidence of quality control gives some perspective to the elegance of cell creation. Burton said it does not mean mistakes never occur. The assembly line analogy holds up there. The human system has an acceptable level of error required to allow for the speed at which cells must reproduce. "RNA polymerase is one of nature’s great designs," Burton said. RNA polymerases are found in bacteria, yeast, plants and humans. The design has endured because of this fidelity mechanism for RNA synthesis. "This is a tried and true design and our study explains why this is an enduring design."

The paper, "Dynamic Error Correction and Regulation of Downstream Bubble Opening by Human RNA Polymerase II," also is authored by research associates Xue Gong and Chunfen Zhang in Burton’s lab and Michael Feig, MSU assistant professor of biochemistry and chemistry.

Zachary Burton | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>