Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel stem cell trial in heart failure patients to begin

12.05.2005


The University of Pittsburgh Medical Center (UPMC) is beginning a clinical trial to evaluate the safety and feasibility of a potential treatment for congestive heart failure that involves injecting a patient’s own bone marrow-derived stem cells directly into the heart muscle. The procedure is expected to be performed in five to 10 patients who are scheduled to receive a heart assist device as a bridge to organ transplantation.



The stem cell trial is one of only a handful that has been cleared by the U.S. Food and Drug Administration (FDA) for heart disease. And because most patients in the UPMC study will eventually receive transplants, the trial represents the first time researchers will be able to examine a human heart treated with stem cells, an opportunity that should help solve some of the mystery as well as resolve scientific debate about just how it is that stem cells work to improve heart function.

Despite advances that have given rise to more effective medical and surgical therapies, including the use of heart assist devices, heart disease continues to exact an economic burden and be a major cause of death in the United States. As such, researchers have looked to the potential of stem cells as a treatment for congestive heart failure and other heart disease. Laboratory studies indicating that a subset of stem cells from bone marrow can generate new heart cells and blood vessels have spawned interest in performing clinical studies. While relatively few such studies have been conducted, and most have been done abroad, preliminary results have shown that blood flow and heart function improve in patients receiving the stem cell therapy.


However, to date, there has been no research in humans that helps explain why such improvements are seen, raising questions that have become the crux of scientific debate about the mechanism and action of these cells once introduced into the heart.

"People have questioned whether stem cells take on the functional characteristics of heart cells or blood vessels, or whether they help recruit other cells and growth factors that have the ability to help regenerate heart tissue. Our study presents the unique opportunity to examine the heart several months after stem cell injections, when the patient’s native heart is removed for organ transplantation, and we’re hopeful we’ll find the answers to everyone’s questions," noted Amit N. Patel, M.D., M.S., principal investigator of the clinical trial and director of UPMC’s Center for Cardiac Cell Therapy. Dr. Patel also is director of the Center for Cardiovascular Cellular Therapy at the McGowan Institute for Regenerative Medicine.

UPMC plans to enroll five to 10 patients. To qualify, patients must have congestive heart failure and require implantation of a ventricular assist device (VAD) as a bridge to transplantation.

Unlike the other FDA-approved trials, surgeons will not deliver the cells through a catheter leading into the heart’s coronary arteries but will instead inject them directly into the diseased heart tissue during the VAD implant surgical procedure. With the patient under anesthesia, Dr. Patel’s team will harvest bone marrow from the patient’s hipbone, and the cells believed to have the greatest therapeutic benefit, CD34+ cells, will be isolated. About three hours later, once the VAD has been implanted and connected to the heart’s main pumping chamber, the ventricle, the cells, together with a small amount of the patient’s blood plasma, will be injected into about 25 to 30 sites of the diseased heart in a process taking no more than five minutes. Depending on their weight, each patient will receive between 25 and 45 million stem cells.

In order to help the researchers better understand what effects the stem cells have on the cellular structures that surround the injection sites, they also will give patients injections containing only plasma to a different area of the heart. That way, once the native heart is removed, pathologists will be able to compare the differences between tissue samples from both areas, as well as make comparisons to tissue samples removed during routine biopsies, which are done at the time of the VAD implantation.

Co-principal investigator of the trial is Robert L. Kormos, M.D., professor of surgery at the University of Pittsburgh School of Medicine, director of UPMC’s Artificial Heart Program and medical director of the McGowan Institute for Regenerative Medicine.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>