Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel stem cell trial in heart failure patients to begin

12.05.2005


The University of Pittsburgh Medical Center (UPMC) is beginning a clinical trial to evaluate the safety and feasibility of a potential treatment for congestive heart failure that involves injecting a patient’s own bone marrow-derived stem cells directly into the heart muscle. The procedure is expected to be performed in five to 10 patients who are scheduled to receive a heart assist device as a bridge to organ transplantation.



The stem cell trial is one of only a handful that has been cleared by the U.S. Food and Drug Administration (FDA) for heart disease. And because most patients in the UPMC study will eventually receive transplants, the trial represents the first time researchers will be able to examine a human heart treated with stem cells, an opportunity that should help solve some of the mystery as well as resolve scientific debate about just how it is that stem cells work to improve heart function.

Despite advances that have given rise to more effective medical and surgical therapies, including the use of heart assist devices, heart disease continues to exact an economic burden and be a major cause of death in the United States. As such, researchers have looked to the potential of stem cells as a treatment for congestive heart failure and other heart disease. Laboratory studies indicating that a subset of stem cells from bone marrow can generate new heart cells and blood vessels have spawned interest in performing clinical studies. While relatively few such studies have been conducted, and most have been done abroad, preliminary results have shown that blood flow and heart function improve in patients receiving the stem cell therapy.


However, to date, there has been no research in humans that helps explain why such improvements are seen, raising questions that have become the crux of scientific debate about the mechanism and action of these cells once introduced into the heart.

"People have questioned whether stem cells take on the functional characteristics of heart cells or blood vessels, or whether they help recruit other cells and growth factors that have the ability to help regenerate heart tissue. Our study presents the unique opportunity to examine the heart several months after stem cell injections, when the patient’s native heart is removed for organ transplantation, and we’re hopeful we’ll find the answers to everyone’s questions," noted Amit N. Patel, M.D., M.S., principal investigator of the clinical trial and director of UPMC’s Center for Cardiac Cell Therapy. Dr. Patel also is director of the Center for Cardiovascular Cellular Therapy at the McGowan Institute for Regenerative Medicine.

UPMC plans to enroll five to 10 patients. To qualify, patients must have congestive heart failure and require implantation of a ventricular assist device (VAD) as a bridge to transplantation.

Unlike the other FDA-approved trials, surgeons will not deliver the cells through a catheter leading into the heart’s coronary arteries but will instead inject them directly into the diseased heart tissue during the VAD implant surgical procedure. With the patient under anesthesia, Dr. Patel’s team will harvest bone marrow from the patient’s hipbone, and the cells believed to have the greatest therapeutic benefit, CD34+ cells, will be isolated. About three hours later, once the VAD has been implanted and connected to the heart’s main pumping chamber, the ventricle, the cells, together with a small amount of the patient’s blood plasma, will be injected into about 25 to 30 sites of the diseased heart in a process taking no more than five minutes. Depending on their weight, each patient will receive between 25 and 45 million stem cells.

In order to help the researchers better understand what effects the stem cells have on the cellular structures that surround the injection sites, they also will give patients injections containing only plasma to a different area of the heart. That way, once the native heart is removed, pathologists will be able to compare the differences between tissue samples from both areas, as well as make comparisons to tissue samples removed during routine biopsies, which are done at the time of the VAD implantation.

Co-principal investigator of the trial is Robert L. Kormos, M.D., professor of surgery at the University of Pittsburgh School of Medicine, director of UPMC’s Artificial Heart Program and medical director of the McGowan Institute for Regenerative Medicine.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Matchmaking with consequences
17.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Taking screening methods to the next level
17.10.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Taking screening methods to the next level

17.10.2017 | Life Sciences

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

‘Find the Lady’ in the quantum world

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>