Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel stem cell trial in heart failure patients to begin

12.05.2005


The University of Pittsburgh Medical Center (UPMC) is beginning a clinical trial to evaluate the safety and feasibility of a potential treatment for congestive heart failure that involves injecting a patient’s own bone marrow-derived stem cells directly into the heart muscle. The procedure is expected to be performed in five to 10 patients who are scheduled to receive a heart assist device as a bridge to organ transplantation.



The stem cell trial is one of only a handful that has been cleared by the U.S. Food and Drug Administration (FDA) for heart disease. And because most patients in the UPMC study will eventually receive transplants, the trial represents the first time researchers will be able to examine a human heart treated with stem cells, an opportunity that should help solve some of the mystery as well as resolve scientific debate about just how it is that stem cells work to improve heart function.

Despite advances that have given rise to more effective medical and surgical therapies, including the use of heart assist devices, heart disease continues to exact an economic burden and be a major cause of death in the United States. As such, researchers have looked to the potential of stem cells as a treatment for congestive heart failure and other heart disease. Laboratory studies indicating that a subset of stem cells from bone marrow can generate new heart cells and blood vessels have spawned interest in performing clinical studies. While relatively few such studies have been conducted, and most have been done abroad, preliminary results have shown that blood flow and heart function improve in patients receiving the stem cell therapy.


However, to date, there has been no research in humans that helps explain why such improvements are seen, raising questions that have become the crux of scientific debate about the mechanism and action of these cells once introduced into the heart.

"People have questioned whether stem cells take on the functional characteristics of heart cells or blood vessels, or whether they help recruit other cells and growth factors that have the ability to help regenerate heart tissue. Our study presents the unique opportunity to examine the heart several months after stem cell injections, when the patient’s native heart is removed for organ transplantation, and we’re hopeful we’ll find the answers to everyone’s questions," noted Amit N. Patel, M.D., M.S., principal investigator of the clinical trial and director of UPMC’s Center for Cardiac Cell Therapy. Dr. Patel also is director of the Center for Cardiovascular Cellular Therapy at the McGowan Institute for Regenerative Medicine.

UPMC plans to enroll five to 10 patients. To qualify, patients must have congestive heart failure and require implantation of a ventricular assist device (VAD) as a bridge to transplantation.

Unlike the other FDA-approved trials, surgeons will not deliver the cells through a catheter leading into the heart’s coronary arteries but will instead inject them directly into the diseased heart tissue during the VAD implant surgical procedure. With the patient under anesthesia, Dr. Patel’s team will harvest bone marrow from the patient’s hipbone, and the cells believed to have the greatest therapeutic benefit, CD34+ cells, will be isolated. About three hours later, once the VAD has been implanted and connected to the heart’s main pumping chamber, the ventricle, the cells, together with a small amount of the patient’s blood plasma, will be injected into about 25 to 30 sites of the diseased heart in a process taking no more than five minutes. Depending on their weight, each patient will receive between 25 and 45 million stem cells.

In order to help the researchers better understand what effects the stem cells have on the cellular structures that surround the injection sites, they also will give patients injections containing only plasma to a different area of the heart. That way, once the native heart is removed, pathologists will be able to compare the differences between tissue samples from both areas, as well as make comparisons to tissue samples removed during routine biopsies, which are done at the time of the VAD implantation.

Co-principal investigator of the trial is Robert L. Kormos, M.D., professor of surgery at the University of Pittsburgh School of Medicine, director of UPMC’s Artificial Heart Program and medical director of the McGowan Institute for Regenerative Medicine.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>