Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waggle dance controversy resolved by radar records of bee flight paths

12.05.2005


A paper published in Nature on May 12th (1) provides new data that resolves a long-standing scientific controversy. In the 1960s, Nobel Prize winning zoologist, Karl von Frisch, proposed that honeybees use dance (the“waggle dance”) as a coded message to guide other bees to new food sources. However, some scientists did not accept von Frisch’s theory. Using harmonic radar, scientists, funded in part by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC) have now tracked the flight of bees that had attended a “waggle dance” and found that they flew straight to the vicinity of the feeding site, as predicted by von Frisch. The tracks allowed the scientists to determine how accurately bees translate the dance code into successful navigation, and showed that they correct for wind drift even when en route to destinations they have never visited before.



If a honeybee worker discovers a good feeding site it is believed that she informs her nest mates through a dance that describes the distance and direction of the feeding site. This ‘dance language’ was first described by Karl von Frisch in the 1960s but his experiments also showed that bees that had attended the dance (recruits) took far longer to get to food than would be expected. This time delay caused other scientists to argue that the recruits did not read the abstract code in the dance at all, but found the food source simply by tracking down the smell that they had picked up from the dancing bee. Another suggestion was that recruits simply followed the dancer when she flew back to the food, and then other bees joined in. The controversy has persisted because prior to the advent of harmonic radar, no one could show exactly where the recruits flew when they left their hives.

The scientists watched the waggle dance occurring in a glass observation hive and identified recruits. They captured these recruits as they left the hive, attached a radar transponder to them and then tracked their flight paths using harmonic radar. Most recruited bees undertook a flight path that took them straight to the vicinity of the feeding site where they all spent a lot of time in searching flights, trying to locate its exact position. This searching behaviour accounts for the time lag that caused the original controversy.


In another set of experiments, bee recruits leaving the hive were taken to release sites up to 250m away. These bees flew, not to the feeding site, but in the direction that would have taken them to the feeding site had they not been displaced from the hive. This result adds weight to von Frisch’s original theory and allows alternative hypotheses about bee behaviour to be firmly discounted.

Matt Gooode | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

Carcinogenic soot particles from GDI engines

24.05.2017 | Life Sciences

A quantum walk of photons

24.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>