Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Chicago researchers reveal secrets of snake flight

12.05.2005


It seems size does matters after all. But for flying snakes, smaller is better, according to University of Chicago researchers.



In the May 15, 2005, issue of the Journal of Experimental Biology (http://jeb.biologists.org/content/vol208/issue10/), scientists described the effects of size and behavior of flying snakes, and found that the smaller animals were better gliders.

"Despite their lack of wing-like appendages, flying snakes are skilled aerial locomotors," said lead scientist and author Jake Socha, Ph.D., who has been studying these unique creatures for the past eight years.


With the help of colleagues Michael LaBarbera, professor of organismal biology and anatomy at Chicago, and Tony O’Dempsey, an expert in photogrammetry, Socha used 3-D flight information from the synchronized recordings of two video cameras to digitally reconstruct the trajectories, speed and body postures of Chrysopelea paradisi, or paradise tree snake, and Chrysopelea ornata, golden tree snake.

In this study, Socha, who also is a biologist at Argonne National Laboratory, found that paradise tree snakes are true gliders, traveling further horizontally than dropping vertically. The best flight Socha recorded traveled 13 degrees from the horizon at the end of its trajectory.

Socha correlated 19 performance variables, such as glide angle and horizontal speed, of the snake’s flight with 16 size and behavior variables, such as mass and snout-vent length, of the animal’s body. He found that body length and wave amplitude are important predictors of flight behavior, but wave frequency was not.

"These high-amplitude undulations visually dominate the behavior, yet their frequency is unrelated to the snake’s glide performance," Socha said.

So why do they undulate? Socha and LaBarbera suggest it’s for stability. Just as a person who makes small balancing adjustments while walking on a beam, a flying snake might continuously make adjustments to maintain controlled flight.

All other gliders, such as flying squirrels or lizards or gliding birds, maintain a constant wing structure, unlike these flying snakes that whip their bodies through the air. "Although all of these other animals may make small adjustments while gliding, none are as dramatic, rhythmic and dynamic as the flying snake," Socha said.

During his first study, published in Nature in August 2002, Socha described a few aerodynamic features of the paradise tree snake -- one of five snake species that are purported to "fly." He videotaped and photographed various snakes taking off from a 33-foot-high tower in an open field at the Singapore Zoological Gardens. He positioned two video cameras to record in stereo, enabling the 3-D reconstruction of the head, midpoint and vent coordinates of the snake throughout its trajectory.

Socha found that the snake uses its ribs to change its body shape; it flattens from head to vent. The snake takes control of its flight by undulating through the air in a distinctive S-shape as if swimming – moving the tail up and down and side-to-side. While gliding, these snakes make turns up to 90 degrees and always seemed to land without injury.

The researchers now are looking more closely at the aerodynamic issues. They plan to use physical and computer models to study the more complex kinematics of these gliders.

To collect and study these snakes, Socha traveled to Singapore twice and Thailand once with grants from National Geographic Committee for Research and Exploration.

Most flying snakes grow 3 to 4 feet long and live in the trees in the lowland tropical rainforests of South and Southeast Asia. Their temperament varies from species to species, and from individual to individual, but all five species of flying snakes are in the Colubridae family and officially are classified as harmless.

Flying snakes secrete mild venom that is only dangerous to their small prey. They are diurnal and opistoglyphous, or rear-fanged. These back teeth measure only 2 to 3 millimeters long and each has a small groove that runs along the fang’s outer edge, where the venom drips down and into the prey. Whether or not the snake’s choice of prey is related to its gliding ability is unknown.

Catherine Gianaro | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>