Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Chicago researchers reveal secrets of snake flight

12.05.2005


It seems size does matters after all. But for flying snakes, smaller is better, according to University of Chicago researchers.



In the May 15, 2005, issue of the Journal of Experimental Biology (http://jeb.biologists.org/content/vol208/issue10/), scientists described the effects of size and behavior of flying snakes, and found that the smaller animals were better gliders.

"Despite their lack of wing-like appendages, flying snakes are skilled aerial locomotors," said lead scientist and author Jake Socha, Ph.D., who has been studying these unique creatures for the past eight years.


With the help of colleagues Michael LaBarbera, professor of organismal biology and anatomy at Chicago, and Tony O’Dempsey, an expert in photogrammetry, Socha used 3-D flight information from the synchronized recordings of two video cameras to digitally reconstruct the trajectories, speed and body postures of Chrysopelea paradisi, or paradise tree snake, and Chrysopelea ornata, golden tree snake.

In this study, Socha, who also is a biologist at Argonne National Laboratory, found that paradise tree snakes are true gliders, traveling further horizontally than dropping vertically. The best flight Socha recorded traveled 13 degrees from the horizon at the end of its trajectory.

Socha correlated 19 performance variables, such as glide angle and horizontal speed, of the snake’s flight with 16 size and behavior variables, such as mass and snout-vent length, of the animal’s body. He found that body length and wave amplitude are important predictors of flight behavior, but wave frequency was not.

"These high-amplitude undulations visually dominate the behavior, yet their frequency is unrelated to the snake’s glide performance," Socha said.

So why do they undulate? Socha and LaBarbera suggest it’s for stability. Just as a person who makes small balancing adjustments while walking on a beam, a flying snake might continuously make adjustments to maintain controlled flight.

All other gliders, such as flying squirrels or lizards or gliding birds, maintain a constant wing structure, unlike these flying snakes that whip their bodies through the air. "Although all of these other animals may make small adjustments while gliding, none are as dramatic, rhythmic and dynamic as the flying snake," Socha said.

During his first study, published in Nature in August 2002, Socha described a few aerodynamic features of the paradise tree snake -- one of five snake species that are purported to "fly." He videotaped and photographed various snakes taking off from a 33-foot-high tower in an open field at the Singapore Zoological Gardens. He positioned two video cameras to record in stereo, enabling the 3-D reconstruction of the head, midpoint and vent coordinates of the snake throughout its trajectory.

Socha found that the snake uses its ribs to change its body shape; it flattens from head to vent. The snake takes control of its flight by undulating through the air in a distinctive S-shape as if swimming – moving the tail up and down and side-to-side. While gliding, these snakes make turns up to 90 degrees and always seemed to land without injury.

The researchers now are looking more closely at the aerodynamic issues. They plan to use physical and computer models to study the more complex kinematics of these gliders.

To collect and study these snakes, Socha traveled to Singapore twice and Thailand once with grants from National Geographic Committee for Research and Exploration.

Most flying snakes grow 3 to 4 feet long and live in the trees in the lowland tropical rainforests of South and Southeast Asia. Their temperament varies from species to species, and from individual to individual, but all five species of flying snakes are in the Colubridae family and officially are classified as harmless.

Flying snakes secrete mild venom that is only dangerous to their small prey. They are diurnal and opistoglyphous, or rear-fanged. These back teeth measure only 2 to 3 millimeters long and each has a small groove that runs along the fang’s outer edge, where the venom drips down and into the prey. Whether or not the snake’s choice of prey is related to its gliding ability is unknown.

Catherine Gianaro | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>