How exactly does the brain control breathing?

An understanding of exactly how the brain controls breathing is fundamental to the treatment of respiratory disorders. We know that breathing is an automatic rhythmic process that persists without conscious effort whether we are awake or asleep, but the question that has intrigued many scientists for well over 100 years is what maintains this almost fail safe vital rhythm throughout life?


Experimental Physiology editor Julian Paton invited two world renowned scientists Dr. Guyenet from the University of Charlottesville and Dr. Richerson from Yale University, to use the journal as a forum to discuss the issue and attempt to resolve their differences in opinion.

Both authors agree that the respiratory rhythm requires specialised nerve cells (central chemoreceptors) to power the rhythm, but the issue highly debated by Guyenet and Richerson is the precise location and cell types involved. Guyenet proposes that these nerve cells are located in a ventral area of the brainstem (the retrofacial region) and loaded with a transmitter substance called glutamate. Their close proximity to the ventral surface of the brain allows them to sense and react to changes in the pH of the cerebrospinal fluid; this is deemed an essential property of a central chemoreceptor. Richerson, on the other hand, stipulates that central chemoreceptors are found close to the midline blood vessels of the brainstem allowing them to ’taste’ the pH of the blood. His cells do not contain glutamate but a substance called serotonin.

Media Contact

Lucy Mansfield EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors