Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How exactly does the brain control breathing?

12.05.2005


An understanding of exactly how the brain controls breathing is fundamental to the treatment of respiratory disorders. We know that breathing is an automatic rhythmic process that persists without conscious effort whether we are awake or asleep, but the question that has intrigued many scientists for well over 100 years is what maintains this almost fail safe vital rhythm throughout life?



Experimental Physiology editor Julian Paton invited two world renowned scientists Dr. Guyenet from the University of Charlottesville and Dr. Richerson from Yale University, to use the journal as a forum to discuss the issue and attempt to resolve their differences in opinion.

Both authors agree that the respiratory rhythm requires specialised nerve cells (central chemoreceptors) to power the rhythm, but the issue highly debated by Guyenet and Richerson is the precise location and cell types involved. Guyenet proposes that these nerve cells are located in a ventral area of the brainstem (the retrofacial region) and loaded with a transmitter substance called glutamate. Their close proximity to the ventral surface of the brain allows them to sense and react to changes in the pH of the cerebrospinal fluid; this is deemed an essential property of a central chemoreceptor. Richerson, on the other hand, stipulates that central chemoreceptors are found close to the midline blood vessels of the brainstem allowing them to ’taste’ the pH of the blood. His cells do not contain glutamate but a substance called serotonin.

Lucy Mansfield | EurekAlert!
Further information:
http://www.blackwellpublishing.com

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>