Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How exactly does the brain control breathing?

12.05.2005


An understanding of exactly how the brain controls breathing is fundamental to the treatment of respiratory disorders. We know that breathing is an automatic rhythmic process that persists without conscious effort whether we are awake or asleep, but the question that has intrigued many scientists for well over 100 years is what maintains this almost fail safe vital rhythm throughout life?



Experimental Physiology editor Julian Paton invited two world renowned scientists Dr. Guyenet from the University of Charlottesville and Dr. Richerson from Yale University, to use the journal as a forum to discuss the issue and attempt to resolve their differences in opinion.

Both authors agree that the respiratory rhythm requires specialised nerve cells (central chemoreceptors) to power the rhythm, but the issue highly debated by Guyenet and Richerson is the precise location and cell types involved. Guyenet proposes that these nerve cells are located in a ventral area of the brainstem (the retrofacial region) and loaded with a transmitter substance called glutamate. Their close proximity to the ventral surface of the brain allows them to sense and react to changes in the pH of the cerebrospinal fluid; this is deemed an essential property of a central chemoreceptor. Richerson, on the other hand, stipulates that central chemoreceptors are found close to the midline blood vessels of the brainstem allowing them to ’taste’ the pH of the blood. His cells do not contain glutamate but a substance called serotonin.

Lucy Mansfield | EurekAlert!
Further information:
http://www.blackwellpublishing.com

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>