Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UQ researcher journeys to the centre of the cell

11.05.2005


The discovery of a fundamental new route into cells may lead to new methods of drug delivery and to a better understanding of viral infection.



Researchers from The University of Queensland’s Institute for Molecular Bioscience (IMB), and the Centre for Microscopy and Microanalysis used electron microscopy to uncover new structures, 100,000th of a mm in size, which are involved in the very first step of particle and nutrient uptake into cells.

Cells require a constant flux of nutrients and other chemicals for survival and it is vitally important to understand how these materials reach the inside of the cell.


IMB’s Professor Rob Parton said that endocytosis, the process of regulated uptake by the cell was vitally important, occurred continuously, and a cell virtually ate its entire skin every 30 minutes.

"Endocytosis can be hijacked by viruses to enter the cell and so understanding this process can provide avenues to stop some viral infections. In addition, endocytosis can be used by researchers aiming to deliver drugs into cells," he said.

"This new pathway was long suspected, however our work was the first to conclusively prove its existence and to identify the cellular structures involved.

"The discovery of this pathway presents unexplored avenues for the development of new drugs to fight certain viral infections, as well as opening up new possibilities for drug delivery or gene therapy.

"In addition we believe this pathway is extremely important in evolutionary terms and will provide important information about the development of complex organisms," Professor Parton said.

He said the next step was to determine the proteins and genes involved in the process.

Professor Parton also acknowledged the contributions of his co-workers, in particular Matthew Kirkham (PhD student) and Akikazu Fujita (visiting scientist) who jointly conducted the majority of the work at the University of Queensland, as well as his overseas collaborators in India, the United States, and Germany.

Professor Parton’s work was published in the internationally recognised Journal of Cell Biology.

The IMB is at the forefront of the drive to understand the programming and regulation of mammalian growth and development, which will significantly impact on human health through new therapeutics and diagnostics.

Russell Griggs | EurekAlert!
Further information:
http://www.researchaustralia.com.au

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>