Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new approach to prevent cancer


Scientists at the University of Dundee have identified a way of inactivating a naturally occurring human protein, a development which could offer new routes to developing cancer prevention treatments.

Professor John Hayes and Dr Lesley McLellan in the Biomedical Research Centre at the University, along with Dr Chris Lindsay, have found that the protein, called Keap1, is a target for a new class of cancer prevention treatments.

The researchers say the findings simplify the actions that could be taken to protect cells against cancer-causing chemicals.

"From a scientific point of view this is rather unexpected because previous papers have suggested that inactivation of Keap1 is not sufficient to switch-on anti-cancer defences but that other changes in the cell are also required. Importantly, we have found it is simpler than that. You only have to inactivate Keap1. Just a single target!" said Prof Hayes.

"This could be very important in future development of prophylactic treatments, and also in understanding what can happen in human cells as opposed to animal cells. Humans are not big mice, so to find the cleanest and simplest way of activating this defence system in humans, without causing side-effects, is extremely important."

More than 80% of cancer cases are attributable to environmental factors, and evidence suggests that many forms of malignant disease are avoidable. Well known risks include exposure to sunlight, cigarette smoke, asbestos, alcohol and some mould toxins.

Cancer susceptibility is influenced significantly by diet. We can help protect ourselves against cancer by eating diets that can stimulate natural defences of the cell against harmful chemicals. A large number of compounds found in plants, as well as synthetic food additives, have been shown to possess this ability. Broccoli, Brussels Sprouts, cauliflower, garlic and onion contain some of the compounds that can help prevent cancer. These dietary agents activate protective systems by causing small alterations in the normal antioxidant balance of the cell; this triggers cellular factors to increase levels of antioxidant and detoxification proteins as a compensatory mechanism.

In the past 5 years, experiments in model systems have shown that a protein called Nrf2 is responsible for controlling about 200 genes that are involved in a variety of protective processes in the cell. These Nrf2-regulated genes can provide defence against a spectrum of cancer-causing chemicals. Under normal conditions the Nrf2 protein is very unstable, and each molecule only survives for a few minutes in the cell. The instability of Nrf2 is due to its interaction with another protein called Keap1 that continually directs its destruction.

However, when the antioxidant capacity of the cell is depleted the stability of Nrf2 is increased at least 6-fold. This occurs because Keap1 somehow loses its ability to have Nrf2 targeted for degradation, but the details of this process are currently unclear. The antioxidant-dependent regulation of Nrf2 is a type of negative feedback control that acts to ensure protective genes are maximally switched on when the antioxidant balance of the cell is disturbed. It represents a form of adaptation of the cell to its environment.

As described in a paper published on May 9 in the Proceedings of the National Academy of Sciences USA, the laboratories of Prof Hayes, Dr McLellan and Dr Lindsay have designed a nucleic acid molecule, of the type called siRNA, which interferes with the expression of Keap1.

When introduced into human skin cells, they found that the siRNA against Keap1 caused levels of Keap1 to become depleted, resulting in accumulation of Nrf2 and activation of antioxidant genes.

"This is an important finding because it means that cellular defences can be increased without a need for their antioxidant status to be first compromised, an event that on occasions could lead to lasting damage," said Prof Hayes.

"It means that cells can be pre-prepared for exposure to noxious chemicals. From a scientific point of view, these findings show that inhibition of the function of Keap1 is sufficient to activate protective genes; it is not essential that Nrf2 is activated by chemicals that deplete antioxidant levels before defence genes are induced.

"It should now be possible to define for the first time the human genes that are regulated by the Nrf2/Keap1 pathway. This is important to our understanding of cancer chemoprevention in humans because it is already clear that the Nrf2-dependent response in humans is different to that found in other organisms.

"Furthermore, this study will facilitate identification of the kinds of cancer-causing chemicals that human cells can be protected against by the Nrf2/Keap1-dependent adaptive response. In summary, the findings of the paper suggest that inhibition of Keap1 activity is sufficient to enhance the antioxidant capacity of human cells and that this could help protect against the development of cancer."

| alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>