Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researcher studies deafness in fruit flies, humans

10.05.2005


University of Iowa Biological Sciences Professor Daniel F. Eberl and his colleagues at Duke University have uncovered genetic defects leading to deafness in fruit flies that may shed light on deafness in humans. Their research paper, "Myosin VIIA Defects, which Underlie the Usher 1B Syndrome in Humans, Lead to Deafness in Drosophila," is scheduled for publication in the May 10 issue of the journal Current Biology.



Eberl says their recent work -- showing that loss of function in the Myosin VIIA gene leads to complete deafness in fruit flies -- has brought scientists one step closer to understanding how such mutations result in inner-ear abnormalities and deafness in humans. "Myosin VIIA was one of the first human hereditary deafness genes to be identified. But it is not clear exactly how this molecule works in the human ear," he says.

Previous evidence suggested that fruit flies and humans rely on the same genes to develop their auditory organs, which in the fruit fly is in the antenna. Eberl’s research shows that at least one molecular component specialized for hearing function, myosin VIIA, is conserved in these ears.


In looking for clues to inherited deafness in humans, Eberl begins with the "love song" of the fruit fly. Although they may seem an odd choice, the fruit fly and its love song are very effective tools for learning about the molecular and cellular mechanisms involved in hearing in insects and animals, including humans, says Eberl, who is trying to identify the genes responsible for hearing in fruit flies.

Whether or not mutant fruit flies can hear the fruit fly love song (actually a vibrating wing) enables Eberl to evaluate the function of genes responsible for hearing. He and his graduate student, Sokol Todi, implant electrodes into the antennas of the flies, and record the voltages the receptor cells generate as the flies listen to the love song. By comparing the electrical impulses generated by the normal flies to those generated by myosin VIIA mutant flies, they showed that the myosin VIIA gene is essential for hearing in flies, as it is in humans.

Now that they know the same molecule is used, scientists will be able to design experiments to test specific mechanisms that have been hypothesized. Eberl says, "These experiments are next to impossible in humans, but quite feasible in the fruit fly."

"Understanding how this protein works and examining its functional role in hearing will provide new insights into auditory mechanisms, not only in fruit flies, but in humans, as well," he says.

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>