Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researcher studies deafness in fruit flies, humans

10.05.2005


University of Iowa Biological Sciences Professor Daniel F. Eberl and his colleagues at Duke University have uncovered genetic defects leading to deafness in fruit flies that may shed light on deafness in humans. Their research paper, "Myosin VIIA Defects, which Underlie the Usher 1B Syndrome in Humans, Lead to Deafness in Drosophila," is scheduled for publication in the May 10 issue of the journal Current Biology.



Eberl says their recent work -- showing that loss of function in the Myosin VIIA gene leads to complete deafness in fruit flies -- has brought scientists one step closer to understanding how such mutations result in inner-ear abnormalities and deafness in humans. "Myosin VIIA was one of the first human hereditary deafness genes to be identified. But it is not clear exactly how this molecule works in the human ear," he says.

Previous evidence suggested that fruit flies and humans rely on the same genes to develop their auditory organs, which in the fruit fly is in the antenna. Eberl’s research shows that at least one molecular component specialized for hearing function, myosin VIIA, is conserved in these ears.


In looking for clues to inherited deafness in humans, Eberl begins with the "love song" of the fruit fly. Although they may seem an odd choice, the fruit fly and its love song are very effective tools for learning about the molecular and cellular mechanisms involved in hearing in insects and animals, including humans, says Eberl, who is trying to identify the genes responsible for hearing in fruit flies.

Whether or not mutant fruit flies can hear the fruit fly love song (actually a vibrating wing) enables Eberl to evaluate the function of genes responsible for hearing. He and his graduate student, Sokol Todi, implant electrodes into the antennas of the flies, and record the voltages the receptor cells generate as the flies listen to the love song. By comparing the electrical impulses generated by the normal flies to those generated by myosin VIIA mutant flies, they showed that the myosin VIIA gene is essential for hearing in flies, as it is in humans.

Now that they know the same molecule is used, scientists will be able to design experiments to test specific mechanisms that have been hypothesized. Eberl says, "These experiments are next to impossible in humans, but quite feasible in the fruit fly."

"Understanding how this protein works and examining its functional role in hearing will provide new insights into auditory mechanisms, not only in fruit flies, but in humans, as well," he says.

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>