Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system lab model overcomes ethical limits on human hematopoietic stem cells studies

10.05.2005


Models with complete human immune system derived from hematopoietic stem cells produce functional white blood cells for studies of immune responses against cancer and infection with help from St. Jude



Scientists at St. Jude Children’s Research Hospital have joined with colleagues at several other institutions to develop a laboratory model of the human immune system. This model will allow scientists to study ways for improving the results of hematopoietic stem cell (HSC) transplantation without putting patients at risk.

Researchers say the model will also be a valuable tool for studying how stem cells give rise to various parts of the immune system, including T lymphocytes; how immune cells kill cancer cells and fight infections; and how immune cells respond to radiation and chemotherapy, two major treatments for many cancers. A report on this work appears in the May 15 issue of Journal of Immunology. The study was done in cooperation with The Jackson Laboratory (Bar Harbor, ME), the University of Tennessee (Memphis), EMD Lexigen Research Center (Billerica, MA) and the University of Massachusetts (Worcester, MA).


The breakthrough is particularly important because it solves an ethical dilemma facing researchers who study the human immune system, according to Rupert Handgretinger, M.D., Ph.D., director of Stem Cell Transplantation at St. Jude and co-leader of the Transplantation and Gene Therapy Program.

"Hematopoietic stem cell transplantation to replace a patient’s own blood system could cure many more people who have blood cancers and certain genetic and immune disorders," Handgretinger said. "Unfortunately, this treatment has not reached its full potential, in part because of ethical limitations on studying stem cell transplantations in humans. Our new laboratory model will now let researchers around the world do many important experiments that will provide valuable insights into how the immune system works and how to increase the success rate of HSC transplantation."

"Because this new humanized mouse model will permit studies of normal stem cell function, it will be an important tool in research on regenerative medicine," said Leonard D. Schultz, Ph.D., a senior staff scientist at The Jackson Laboratory and first author of the paper. "The ability of these mice to support development of a functional human immune system should also facilitate the testing of experimental human vaccines and help us understand the mechanisms underlying human autoimmune diseases."

Previous models of the human immune system were limited by relatively low levels of success in engraftment of HSCs and the failure of the engrafted cells to produce fully functional immune cells. Engraftment is the process in which stem cells infused into the body are accepted, after which they produce the various types of blood cells normally found in the body.

The model, called NOD-scid IL2Rãnull, can be readily engrafted with human HSCs, which then develop into T cells, B cells, myeloid cells, natural killer (NK) cells and dentritic cells (DCs), Handgretinger said. NK cells are a type of large white blood cells called lymphocytes, which kill both infected cells and tumor cells DCs are white blood cells that trap foreign matter, such as bacteria, and present it to T cells, which then become activated and orchestrate an immune response. Myeloid cells are immune cells that include granulocytes and monocytes.

The investigators demonstrated the model’s effectiveness by showing that it could produce the wide variety of T cells needed to respond to a large number of different potential targets; that the T cells carry a wide diversity of receptors on their surfaces; and that the immune cells respond normally stimulation by multiplying. Receptors are proteins that recognize specific molecules on bacteria, viruses, cancer cells and other potential targets that stimulate the immune system.

A key piece of evidence showing that the model mimics the human immune system by efficiently turning HSCs into T cells in the thymus gland was the finding of so-called "T cell receptor excision circles" (TRECs).

Receptors are made up of protein building blocks, each of which is coded for by a specific gene. TRECs form during a "mix-and-match" rearrangement of these genes into any one of countless combinations. The rings represent sections of DNA cut out of chromosomes during the mixing and matching of genes that are chosen to build a particular receptor. Each T cell uses the resulting combination of genes to make a receptor that lets the cell recognize a specific target. When stimulated to multiply, each parent T cell produces an army of identical cells against a designated target.

Previously, a team led by Handgretinger showed that a high level of TRECs in the blood of children means that the thymus has converted a large number of stem cells into parent T cells--each of which targets a specific foreign substance.

The NOD-scid IL2Rãnull model combines the crucial characteristics of other models that, by themselves, were inadequate to study HSC engraftment and the different functions of an intact human immune system, according to Stanley Chaleff, M.D., a postdoctoral fellow who did much of the work on the project. "This combination of characteristics permits the successful engraftment of HSCs," Chaleff said. "Because our models don’t develop cancer like other models do, they are more efficient tools for studying the human immune system."

Other authors of the study include Leonard D. Shultz, Bonnie L. Lyons, Lisa M. Burzenski and Bruce Gott (The Jackson Laboratory, Bar Harbor, ME); Xiaohua Chen and Stanley Chaleff (St. Jude); Malak Kotb (University of Tennessee, Memphis); Stephen D. Gillies (EMD Lexigen Research Center, Billerica, MA); and Marie King, Julie Mangada and Dale L. Greiner (University of Massachusetts, Worcester, MA).

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>