Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists inhibit cancer gene

10.05.2005


Potential therapy for up to 30 percent of human tumors



By studying mice with skin cancer, researchers at the Huntsman Cancer Institute at the University of Utah discovered a way to inhibit a mutant gene found in up to 30 percent of human tumors.

Called Ras, normal copies of this gene are important in cell signaling, or communication among cells. When mutated, however, Ras is an "oncogene" or cancer-causing gene that has been shown to promote the growth of cancers in the pancreas, colon and lung, as well as thyroid cancer and leukemia.


Attempts to inhibit activated Ras have had limited success until now, but the Huntsman Cancer Institute researchers explain that they have discovered an enzyme that, when inhibited, appears to reduce the incidence of Ras-induced tumors in mice.

They reported their findings in the May 9 - 13, 2005, issue of the journal Proceedings of the National Academy of Sciences Online Early Edition.

Matthew K. Topham, M.D., assistant professor of internal medicine at the University of Utah School of Medicine and lead investigator on the study, explains that the research team had originally been testing a group of enzymes that regulate the function of the Ras gene. These enzymes, called diacylglycerol kinases (DGKs), are implicated in tumor growth.

"When we began our investigation using a type of DGK, called DGK iota, we thought that its absence would cause more tumors to develop, as has happened with other DGKs we have tested. This time, though, when we tested mice with an activated Ras gene, but an absent DGK iota gene, the number of tumors was significantly reduced," Topham says. "This result is interesting, because it happened when the Ras gene was activated. The implication is that a drug therapy could be developed to reduce tumors caused by Ras without significant side effects."

The research team also included Huntsman Cancer Institute scientists Debra Regier, Ph.D.; Jared Higbee; Katrina Lund; Fumio Sakane, Ph.D.; and Stephen M. Prescott, M.D., professor of internal medicine at the University of Utah and executive director of Huntsman Cancer Institute.

The researchers used mice that were bred to have a highly "expressed" -- meaning highly active -- mutant of the Ras oncogene. Such mice were first developed years ago. Prior studies had demonstrated that these mice were very prone to tumors. For the new study, the Hunstman Cancer Institute team deleted the DGK iota gene in these mice and found that they developed few tumors, while mice with an intact DGK iota gene and an activated Ras gene exhibited significantly more tumors.

Topham says his team will now examine more closely the mechanism behind how DGK iota works to inhibit tumor formation.

Matthew K. Topham | EurekAlert!
Further information:
http://www.hci.utah.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>