Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Certain fish have a special mating preference

10.05.2005


A biologist at Washington University in St. Louis has shown that for some fish species, females prefer males with larger sexual organs, and actually choose them for mating. That does not exclude males with an average-sized sex organ, called a gonopodium. These fish out-compete the larger-endowed males in a predator-laden environment because they have a faster burst speed than the males with larger genitalia, who lose out because the size of their organ slows them down, making them ripe for capture by larger fish.

Brian Langerhans, Washington University biology graduate student in Arts & Sciences, has performed studies on mosquitofish (guppy-like fish, about an inch long) and found that female mosquitofish spend 80 percent more time with males who have a large gonopodium. "A male with a larger gonopodium has a higher chance of mating, but in a predator environment he has a higher probability of dying," Langerhans said. "That’s the cost, the tradeoff. On the other hand, we found that in predator-free environments gonopodia size was larger, as there is minimal cost for large genitalia in that environment. Bigger is better for mating, but smaller is better for avoiding predation."

Langerhans and colleagues reported their findings in the May 9 on-line issue of Proceedings of the National Academy of Sciences. Langerhans specializes in the study of ecological factors that shape the evolution of body forms. Male genitalia are more variable than just about any other body form studied, and there is a significant cadre of evolutionary biologists studying this field because genital shape – morphology – is one of the chief characters that taxonomists use to distinguish between closely related species.



Striking diversity

Researchers have thought for about 20 years that the striking diversity of genital form results from post-mating sexual selection, such as sperm competition or cryptic female choice. That is, most evolutionists have believed that for animals with internal fertilization -- like the livebearing fish Langerhans studies which don’t lay eggs-- selection acting within the female’s body that biases fertilization toward males with a particular genital morphology has been largely responsible for the generation of genital diversity. Langerhans’s finding, however, contradicts that theory: he has shown that female mosquitofish make their choice before mating, and overwhelmingly that choice is made with size being the prize.

Langerhans and colleagues collected about 350 males of Gambusia affinis in Texas and the same number of Gambusia hubbsi in the Bahamas, taking them from both predator and non-predator environments. He found that mosquitofish in predator-free environments had gonopodia 15 percent larger than those in predator-laden environments. That’s a heritable trait over generations made easier by the lack of predators. He also observed that the mosquitofish with larger genitalia had slower burst speeds compared with those of smaller genitalia types.

In the laboratory Langerhans took offspring of Texas mosquitofish from both environments and ran a common-garden experiment – in which all environmental factors are the same for all individuals – in laboratory aquaria. He found that gonopodia size was larger in the lab for the offspring of parents collected in predator-free environments – just as in the field – proving heritability.

Sex, lies and videotape

He even got female selection on film. He examined the mating preference of about 50 mosquitofish females, where each female was placed in an aquarium having two videos playing side-by-side at one end of the aquarium. One video was of a male mosquitofish with an average gonopodium; the other was of a male with a 15 percent larger one. This forced a female to make a pre-mating sexual selection. After testing each individual and devoting over 1,000 minutes of observation, Langerhans found that it wasn’t even close.

"They chose the larger one over and over," Langerhans said. "All females had the same preference." A tenet of Langerhans’s study was his belief that the gonopodium could be viewed as a secondary sexual trait – similar to a peacock’s tail, meant to enhance reproductive opportunity and selected by the female – rather than a primary sexual trait – which is the actual reproductive organ itself, simply meant to transfer sperm. Historically, genitalia were not believed to be subject to such sexual selection.

"Male genitalia can be seen as just another morphological character, and if you think of them that way, females might be choosing just as they would for any morphological trait," he said. "This at least partially explains the variability in male genital morphology."

Using this study as a springboard, Langerhans is exploring the role of genital divergence in the process of speciation. Divergence in a copulatory organ might be especially important in speciation -- owing to its obvious link to reproduction, which largely defines species boundaries. Evolutionary changes in male genital morphology between populations may result in reproductive incompatibility when populations merge again in the future, resulting in the generation of new species.

"Since gonopodium size is highly variable among livebearing fish species -- ranging from less than 20 percent of the body length to more than 70% -- I am extending the results reported in the PNAS paper -- divergence of genital size within species -- to an investigation of diversification in genital size between species, inferring possible modes of speciation. Since variation in predator regime exists between as well as within species, we can test specific theoretical predictions regarding genital evolution to evaluate what processes might have caused the patterns."

Langerhans also plans to examine whether other species of livebearing fish also exhibit female mating preference for males with large genitalia. If true, he said, the evolution of this mating preference might help explain the evolution of swords in male swordtail fishes. Swords are conspicuous, elongate projections of the tail fin and are known to be subject to female mate choice.

"Swords resemble gonopodia in overall shape, and thus might effectively represent gonopodium mimics that evolutionarily exploit a pre-existing sensory bias in females," he said. "That is, male ornamentation of the tail fin may have evolved largely due to the pre-existing preference for an elongate structure of a similar shape -- the gonopodium."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>