Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Promising New Gene Network Analysis Method

09.05.2005


Compared with a long-used linear model, a correlation-based statistical method is a more reliable way to map complex gene interactions and pinpoint genes that may be potential cancer treatment targets, according to new Brown University research.



The research is important because it describes a promising new tool for tracing human gene connections, a task critical for understanding and treating cancer and other diseases. Results appeared this week in the online edition of the Proceedings of the National Academy of Sciences. “Genes influence one another in many intricate ways,” said Leon Cooper, professor of physics and neuroscience and director of the Institute for Brain and Neural Systems at Brown. “What we need is a map, or network, of these links. What we’ve identified in this project is a more effective method for making this map.”

The research team – which included scientists from the fields of biology, physics, statistics and computer science at Brown, Università di Bologna in Italy and Tel Aviv University in Israel – set out to answer a question. When a deadly “oncoprotein” is switched on, what chain reaction of gene activity does it set off?


The protein, c-Myc, causes cells to multiply. If the protein is produced unchecked, it can cause breast, colon and other types of cancer. C-Myc contributes to more than 70,000 deaths in the United States each year.

Once the c-Myc switch is thrown, thousands of other genes start pumping out proteins or switching on other genes, which activates still more genes. One way to study this web of connections would be to set off the chain reaction and study it over time. To make that happen, Brown researchers came up with a clever experiment.

John Sedivy, a long-time c-Myc researcher and the director of Brown’s Center for Genomics and Proteomics, developed rat cells that lacked the c-Myc gene. These cells were further modified to make a form of the c-Myc protein, which could be switched on or off by the hormone treatment tamoxifen.

One batch of cells was treated with tamoxifen, then harvested one, two, four, eight and 16 hours later. Another batch of cells didn’t get the drug but were harvested during the same time frame.

Analysis of gene activity generated in the experiments revealed 1,191 possible players in the c-Myc gene network. A statistical team, led by Gastone Castellani, an associate research professor with the Institute for Brain and Neural Systems and a professor at the Università di Bologna, tested two methods to try to model this network.

One was the linear Markov model, a decades-old tool used to crunch everything from sports statistics to language production. The other was a correlation method based on network theory, which has been used to explain complex systems such as power grids and neural networks.

After applying both statistical methods to the experimental data, the team found that the correlation method was a more effective analytical tool. The method was sensitive enough to capture gene network changes after tamoxifen treatment, producing a list of 130 genes significantly altered by c-Myc activation. This method was also reliable. When researchers reshuffled the data time points, those network changes disappeared.

In contrast, the gene network constructed by the linear Markov model appeared to be insensitive to the effects of tamoxifen. Even when researchers shuffled the data time points, the network appeared largely unchanged.

“Network theory has been hugely informative in analyzing the genomes of simple species such as yeast,” Sedivy said. “Here, the theory is applied to a much more complex system: humans. The overall concept – the time series experiments and the combination of statistics and network theory – is quite novel. This should be an important new approach to studying gene expression.”

The research team also includes Brenda O’Connell and Nicola Neretti from Brown University; Daniel Remondini from Università di Bologna; and Nathan Intrator, who holds positions at Brown University and Tel Aviv University.

The National Institutes of Health, the Ministero dell’Instruzione, dell’Università e della Ricera, the Institute for Brain and Neural Systems and the Office of the Vice President of Research at Brown University funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>