Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Promising New Gene Network Analysis Method

09.05.2005


Compared with a long-used linear model, a correlation-based statistical method is a more reliable way to map complex gene interactions and pinpoint genes that may be potential cancer treatment targets, according to new Brown University research.



The research is important because it describes a promising new tool for tracing human gene connections, a task critical for understanding and treating cancer and other diseases. Results appeared this week in the online edition of the Proceedings of the National Academy of Sciences. “Genes influence one another in many intricate ways,” said Leon Cooper, professor of physics and neuroscience and director of the Institute for Brain and Neural Systems at Brown. “What we need is a map, or network, of these links. What we’ve identified in this project is a more effective method for making this map.”

The research team – which included scientists from the fields of biology, physics, statistics and computer science at Brown, Università di Bologna in Italy and Tel Aviv University in Israel – set out to answer a question. When a deadly “oncoprotein” is switched on, what chain reaction of gene activity does it set off?


The protein, c-Myc, causes cells to multiply. If the protein is produced unchecked, it can cause breast, colon and other types of cancer. C-Myc contributes to more than 70,000 deaths in the United States each year.

Once the c-Myc switch is thrown, thousands of other genes start pumping out proteins or switching on other genes, which activates still more genes. One way to study this web of connections would be to set off the chain reaction and study it over time. To make that happen, Brown researchers came up with a clever experiment.

John Sedivy, a long-time c-Myc researcher and the director of Brown’s Center for Genomics and Proteomics, developed rat cells that lacked the c-Myc gene. These cells were further modified to make a form of the c-Myc protein, which could be switched on or off by the hormone treatment tamoxifen.

One batch of cells was treated with tamoxifen, then harvested one, two, four, eight and 16 hours later. Another batch of cells didn’t get the drug but were harvested during the same time frame.

Analysis of gene activity generated in the experiments revealed 1,191 possible players in the c-Myc gene network. A statistical team, led by Gastone Castellani, an associate research professor with the Institute for Brain and Neural Systems and a professor at the Università di Bologna, tested two methods to try to model this network.

One was the linear Markov model, a decades-old tool used to crunch everything from sports statistics to language production. The other was a correlation method based on network theory, which has been used to explain complex systems such as power grids and neural networks.

After applying both statistical methods to the experimental data, the team found that the correlation method was a more effective analytical tool. The method was sensitive enough to capture gene network changes after tamoxifen treatment, producing a list of 130 genes significantly altered by c-Myc activation. This method was also reliable. When researchers reshuffled the data time points, those network changes disappeared.

In contrast, the gene network constructed by the linear Markov model appeared to be insensitive to the effects of tamoxifen. Even when researchers shuffled the data time points, the network appeared largely unchanged.

“Network theory has been hugely informative in analyzing the genomes of simple species such as yeast,” Sedivy said. “Here, the theory is applied to a much more complex system: humans. The overall concept – the time series experiments and the combination of statistics and network theory – is quite novel. This should be an important new approach to studying gene expression.”

The research team also includes Brenda O’Connell and Nicola Neretti from Brown University; Daniel Remondini from Università di Bologna; and Nathan Intrator, who holds positions at Brown University and Tel Aviv University.

The National Institutes of Health, the Ministero dell’Instruzione, dell’Università e della Ricera, the Institute for Brain and Neural Systems and the Office of the Vice President of Research at Brown University funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>