Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Promising New Gene Network Analysis Method

09.05.2005


Compared with a long-used linear model, a correlation-based statistical method is a more reliable way to map complex gene interactions and pinpoint genes that may be potential cancer treatment targets, according to new Brown University research.



The research is important because it describes a promising new tool for tracing human gene connections, a task critical for understanding and treating cancer and other diseases. Results appeared this week in the online edition of the Proceedings of the National Academy of Sciences. “Genes influence one another in many intricate ways,” said Leon Cooper, professor of physics and neuroscience and director of the Institute for Brain and Neural Systems at Brown. “What we need is a map, or network, of these links. What we’ve identified in this project is a more effective method for making this map.”

The research team – which included scientists from the fields of biology, physics, statistics and computer science at Brown, Università di Bologna in Italy and Tel Aviv University in Israel – set out to answer a question. When a deadly “oncoprotein” is switched on, what chain reaction of gene activity does it set off?


The protein, c-Myc, causes cells to multiply. If the protein is produced unchecked, it can cause breast, colon and other types of cancer. C-Myc contributes to more than 70,000 deaths in the United States each year.

Once the c-Myc switch is thrown, thousands of other genes start pumping out proteins or switching on other genes, which activates still more genes. One way to study this web of connections would be to set off the chain reaction and study it over time. To make that happen, Brown researchers came up with a clever experiment.

John Sedivy, a long-time c-Myc researcher and the director of Brown’s Center for Genomics and Proteomics, developed rat cells that lacked the c-Myc gene. These cells were further modified to make a form of the c-Myc protein, which could be switched on or off by the hormone treatment tamoxifen.

One batch of cells was treated with tamoxifen, then harvested one, two, four, eight and 16 hours later. Another batch of cells didn’t get the drug but were harvested during the same time frame.

Analysis of gene activity generated in the experiments revealed 1,191 possible players in the c-Myc gene network. A statistical team, led by Gastone Castellani, an associate research professor with the Institute for Brain and Neural Systems and a professor at the Università di Bologna, tested two methods to try to model this network.

One was the linear Markov model, a decades-old tool used to crunch everything from sports statistics to language production. The other was a correlation method based on network theory, which has been used to explain complex systems such as power grids and neural networks.

After applying both statistical methods to the experimental data, the team found that the correlation method was a more effective analytical tool. The method was sensitive enough to capture gene network changes after tamoxifen treatment, producing a list of 130 genes significantly altered by c-Myc activation. This method was also reliable. When researchers reshuffled the data time points, those network changes disappeared.

In contrast, the gene network constructed by the linear Markov model appeared to be insensitive to the effects of tamoxifen. Even when researchers shuffled the data time points, the network appeared largely unchanged.

“Network theory has been hugely informative in analyzing the genomes of simple species such as yeast,” Sedivy said. “Here, the theory is applied to a much more complex system: humans. The overall concept – the time series experiments and the combination of statistics and network theory – is quite novel. This should be an important new approach to studying gene expression.”

The research team also includes Brenda O’Connell and Nicola Neretti from Brown University; Daniel Remondini from Università di Bologna; and Nathan Intrator, who holds positions at Brown University and Tel Aviv University.

The National Institutes of Health, the Ministero dell’Instruzione, dell’Università e della Ricera, the Institute for Brain and Neural Systems and the Office of the Vice President of Research at Brown University funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>