Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR Chemist Part of Team Identifying New Areas of Gene Regulation

10.05.2005


Discovery of new location in a key protein that activates genetic activity aided with use of mass spectrometry at UCR

Researcher Kangling Zhang at the University of California, Riverside is part of a team that has discovered a new way that yeast governs genetic expression and repression, a finding that could be repeated in cells of other organisms.

Zhang, an academic coordinator at the Mass Spectrometry Facility of the Department of Chemistry at UCR, worked with Feng Xu and Michael Grunstein of the Department of Biological Chemistry at the David Geffen School of Medicine at UCLA on a paper titled Acetylation in Histone H3 Globular Domain Regulates Gene Expression in Yeast, which was published today in the journal Cell.



The paper focuses on observations of histones, the proteins that regulate genetic expression and form the major supporting structures housing the cell’s DNA. Histones interacting with each other form a ‘spool’ around which DNA is wrapped in the cell. Grunstein, one of the scientists in the current team, discovered in 1991 that sites of histone acetylation, a modification of the protein, play a fundamental role in the regulation of gene activation and repression.

The key findings of the current paper were the discovery of this acetylation at the core of the histone, rather than at the proteins’ ends, which are where most gene regulation is thought to take place. The team used mass spectrometry to show that acetylation at the core of the histone is associated with gene activation by attracting the protein string known as the SWI/SNI chromatin remodeling complex to the location of acetylation.

“In this paper, we used mass spectrometry to identify a novel acetylation site at the lysine 56 of yeast histone H3,” said Zhang, referring to the previously unknown location of a chemical opening to allow genetic transfers to occur. “We found acetylation at this site near the entry-exit points of the DNA superhelix as it wraps around the nucleosome is required for recruiting the nucleosome remodeling complex SWI/SNF and so regulates gene activity,” he said. “We show for the first time that a modification of a histone at the core of the protein, not the end, can regulate genes,” Grunstein added.

The mass spectrometry facility at the UCR’s Department of Chemistry and in the new Physical Sciences building provides super-high sensitivity for research in protein functions and in metabolic profiles of cells. The facility provides service and collaboration not limited to, protein separation, protein identification, sequencing, protein expression level quantification, as well as small molecule structural determination and metabolite identification.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>