Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

By creating molecular ’bridge,’ scientists change function of a protein

09.05.2005


By designing a molecular bridge, scientists at the University of Illinois at Urbana-Champaign have forged a successful pathway through a complex ocean of barriers: They’ve changed the function of a protein using a co-evolution approach.



In a study to be published in the Journal of Molecular Biology, doctoral student Zhilei Chen and Huimin Zhao, a professor of chemical and biomolecular engineering, describe what they call a "simple and efficient method for creation of novel protein functions in an existing protein scaffold."

In doing so, Zhao and Chen skirted the two time-and-labor-consuming approaches tried repeatedly in the past decade: rational design, which requires extensive knowledge of protein folding, structure, function and dynamics; and directed evolution that mimics natural evolution in a test tube but may require the screening of an astronomical number of mutants for the creation of new protein functions.


"We now provide one possible solution to a long-lasting barrier that is important in the protein engineering area -- that is the creation of the new protein functions," Zhao said. "Our approach is to build a bridge between the existing protein function to the target new function by adding some intermediate functions followed by stepwise directed evolution of these intermediate functions. If done, it gives you the ability to create protein functions for any purpose you want -- as a catalyst to create new chemicals that might be useful in such things as therapeutics, for example."

By way of in-vitro co-evolution, the researchers gradually changed the function of the human estrogen receptor alpha, a nuclear hormone receptor mostly expressed in the prostate, ovary and urinary tract. What they did was modify the estrogen receptor in a step-wise fashion, Zhao said. They used testosterone and progesterone to build the bridge.

The receptor was gradually altered to accept one steroid, then another, until accepting the desired one -- corticosterone, a potent glucocoticoid. In total, Zhao and Chen did four rounds of random mutagenesis and screened about 1 million mutants before they found two estrogen receptor mutants that can be activated by corticosterone. The whole process was done in a couple of months.

The authors conclude that their new method may provide "a general approach to engineering biomolecules and biosystems such as receptors, enzymes, antibodies, ribosymes, DNAzymes and viruses with novel functions."

Zhao is a member of the Institute for Genomic Biology and the Center for Biophysics and Computational Biology at Illinois. He also is an affiliate in the chemistry and bioengineering departments.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>