Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal how disease bacterium survives inside immune system cell

10.05.2005


New research on a bacterium that can survive encounters with specific immune system cells has strengthened scientists’ belief that these plentiful white blood cells, known as neutrophils, dictate whether our immune system will permit or prevent bacterial infections. A paper describing the research was released today online in The Journal of Immunology. Frank R. DeLeo, Ph.D., of Rocky Mountain Laboratories (RML), part of the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health, directed the work at RML, in Hamilton, MT, in collaboration with lead author Dori L. Borjesson, D.V.M., Ph.D., of the University of Minnesota in St. Paul.

Scientists analyzed how neutrophils from healthy blood donors respond to Anaplasma phagocytophilum, a tick-borne bacterium that causes granulocytic anaplasmosis in people, dogs, horses and cows. A. phagocytophilum is carried by the same tick that transmits Lyme disease and was first identified in humans in 1996. Human granulocytic anaplasmosis (HGA) -- formerly called human granulocytic ehrlichiosis -- is prevalent in Minnesota and along the East Coast. HGA typically causes mild symptoms that include fever, muscle aches and nausea. Some 362 U.S. cases were reported to the Centers for Disease Control and Prevention in 2003.

HGA is considered an emerging infectious disease, and Dr. Borjesson is working to understand how it affects blood cells -- and neutrophils in particular. "Few people know about this pathogen, but it is important because it is transmitted by ticks and causes disease in both animals and humans," Dr. Borjesson says.



Neutrophils, which make up about 60 percent of all white blood cells, are the largest cellular component of the human immune system -- billions exist inside each human. Typically, neutrophils ingest and then kill harmful bacteria by producing molecules that are toxic to cells, including a bleach-like substance called hypochlorous acid. Once the bacteria are killed, the involved neutrophils self-destruct in a process known as apoptosis. Recent evidence suggests that this process is vital to resolving human infections.

A. phagocytophilum is unusual in that it can delay apoptosis in human neutrophils, which presumably allows some of the bacteria to replicate and cause infection. "This particular bacterium specifically seeks out neutrophils -- possibly the most lethal of all host defense cells -- and remarkably, can alter their function, multiply within them and thereby cause infection," says NIAID Director Anthony S. Fauci, M.D.

Dr. DeLeo says the findings contrast with what is known about other bacterial pathogens, most notably Staphylococcus aureus, which is of great interest because of its increasing resistance to antibiotic treatment. S. aureus, often simply referred to as "staph," are bacteria commonly found on the skin and in the noses of healthy people. Occasionally, staph can cause infection; most are minor, such as pimples, boils and other skin conditions. However, staph bacteria can also cause serious and sometimes fatal infections, such as bloodstream infections, surgical wound infections and pneumonia.

In their experiments, the research team compared the neutrophil response to A. phagocytophilum with that of a weak strain of S. aureus. Using microarray technology that allowed them to compare about 14,000 different human genes, the researchers discovered how the response to A. phagocytophilum deviates from that of S. aureus, and thus permits the HGA agent to survive.

"This study has given us a global model of how bacteria can inhibit neutrophil apoptosis," says Dr. DeLeo. "Our next step is to look at specific human genes or gene pathways within this model and try to determine which of these molecules help prolong cell life following infection." Information gathered from these and similar studies, he adds, could help researchers develop therapeutics to treat or prevent bacterial infections.

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>