Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A whole lot of shaking goin’ on triggers early hatching in red-eyed tree frogs

10.05.2005


Embryos distinguish vibrational differences, hatching early to snake attacks but not to rain

At the edge of Ocelot Pond, Panama, red-eyed tree frog embryos still in their eggs are about to make a life-or-death decision. The egg clutch, a gelatinous blob clinging to a leaf overhanging the water, has been spied by a bright green parrot snake. In a twinkling, the snake tears a few eggs from the clutch.

With that bite, the embryos start to wiggle frantically. As the snake moves to take another morsel, the embryos rupture their egg capsules, drop into the water, and, as tadpoles, swim away to safety -- hatching one to three days earlier than they would have if left undisturbed.



What cues prompt the embryos to hatch early when shaken by a hungry reptile but not when buffeted by another outside force such as rain, is a question that has now been answered in part by Boston University researcher Karen Warkentin. According to her findings, reported in an upcoming issue of Animal Behaviour, it’s a particular characteristic of the vibrations that shake the clutch -- not only the speed of these vibrations, or how hard the clutch is shaken, but the length of and time between the movements that signal the embryos to hatch.

Undisturbed, red-eyed tree frog eggs usually hatch six to eight days after fertilization, but can hatch up to 30 percent earlier if attacked by animals such as snakes or wasps.

At her open-air laboratory at the Gamboa Field Station in Panama, part of the Smithsonian Tropical Research Institute, Warkentin, an assistant professor of biology at BU, used parrot snakes and cat-eye snakes, to find which vibrational cues red-eyed tree frog eggs use to trigger early hatching.

By inserting a minature accelerometer, a device like a microphone that records vibrations instead of sounds, into clutches of eggs she had collected, Warkentin was able to record vibrations that occurred when the snakes attacked the eggs. As comparison, she also recorded the vibrations of the clutches caused by tropical rain storms.

To determine whether the frog embryos were hatching in response to vibration and not to some chemical or visual cue, Warkentin played the recordings back through a device that mechanically shook the clutches. Sure enough, the eggs hatched more often in response to snake-attack recordings than rainstorm recordings.

"They hatch when the snake starts biting the clutch, not before," she says. "It’s not because there are snakes in the neighborhood or snakes there looking at it."

Warkentin examined the recordings to see whether she could tell how rain and snake-attack vibrations differed. "Two of the most obvious differences between vibrations caused by rain and vibrations caused by snakes are elements of the temporal pattern," she says. "Snake bites, in general, last longer than raindrops, and the spaces between snake bites are generally longer than the spaces between raindrops."

To test the hypothesis that embryos use these features of vibrations to assess danger, Warkentin clumped the rain recordings together into tightly spaced segments, making them more snake-like. Conversely, she spliced bits of stillness into the snake vibrations, making them more rain-like. When snake-like rain and actual rain recordings were played to a clutch of red-eyed tree frog eggs, the eggs hatched more often to the snake-like rain recordings. When the rain-like snake recordings and actual snake recordings were played to the clutch, the embryos hatched less often in response to rain-like snake recordings. Both instances, therefore, provided more evidence that temporal patterns serve as an important cue for the frogs.

Warkentin created similar temporal patterns out of computer-generated nonspecific sound, or "white noise." Again, the snake-like pattern of white noise caused more eggs to hatch prematurely than did the rain-like white noise. "These experiments don’t rule out the possibility that the frog eggs use other cues," she says. "But clearly, differences in temporal patterns are enough to affect the perception of how dangerous a disturbance is."

Ann Marie Menting | EurekAlert!
Further information:
http://www.bu.edu

More articles from Life Sciences:

nachricht Reptile vocalization is surprisingly flexible
30.05.2017 | Max-Planck-Institut für Ornithologie

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>