Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer exploits the body’s wound-healing process

06.05.2005


Scientists have known for the last decade that a link exists between wound healing and cancer. For instance, in a 1994 experiment at the Lawrence Berkeley National Laboratory, chickens infected with a cancer virus developed tumors in areas of their body that had undergone wounding or scarring, while no tumors developed in infected areas that had not suffered wounding. However, the biological mechanism for this process hasn’t been clear.



Now, through studying muscle tissue in breast cancer, scientists in the lab of Whitehead Institute Member Robert Weinberg have discovered the process by which tumors hijack normal wound-healing processes and use them for their own purposes.

Reported in the May 6 issue of the journal Cell, the research began when Akira Orimo, a postdoctoral scientist in Weinberg’s lab, investigated the nature of stromal cells found in breast cancer tumors. Stromal cells form the connective tissue in a mammal’s organs and glands. They also form the connective tissue inside a tumor. Tumors are composed mostly of cancer cells and stromal cells, and researchers have wondered if the stromal cells in tumors function any differently than they do in normal tissues. Do they simply hold the tumor together the same way they hold a pancreas or a liver together, or do they actively work with the cancer cells in promoting the tumor’s growth? "It turns out the cancer cells are not acting alone," says Weinberg, who is also a Professor of Biology at MIT. "These stromal cells play an important role in helping these cells, and therefore tumors, to grow."


Orimo found that a particular protein produced by the stromal cells and recruited into human breast cancers, called SDF-1, is a key player in helping tumors grow. SDF-1 interacts with a class of cells called endothelial precursor cells. Found primarily in the blood, these cells travel throughout the body and help aid wounded tissue by enabling new blood vessels to form, a process called angiogenesis. They are an integral part of the body’s ability to heal itself.

The stromal cells in the breast cancer tumor produce SDF-1, which in turn persuades these endothelial precursor cells to enter the tumor. Once they do, they help the tumor to form its own robust network of blood vessels, weaving a circulatory system throughout the tumor mass. The tumor can now access the nutrients present in the host’s circulating blood and can then grow unchecked. "Essentially, these stromal cells opportunistically exploit the normal wound healing process to benefit the tumor," says Weinberg.

In recent years, scientists have focused on angiogenesis as a target for therapeutics, with some success. "These findings are one part of the larger angiogenesis picture," says Weinberg. "They lend precision and specificity to that overall scheme."

Orimo now plans to further investigate this process by disturbing the interactions between the stromal cells and the cancer cells, work that may yield new therapeutic insights.

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>