Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer exploits the body’s wound-healing process

06.05.2005


Scientists have known for the last decade that a link exists between wound healing and cancer. For instance, in a 1994 experiment at the Lawrence Berkeley National Laboratory, chickens infected with a cancer virus developed tumors in areas of their body that had undergone wounding or scarring, while no tumors developed in infected areas that had not suffered wounding. However, the biological mechanism for this process hasn’t been clear.



Now, through studying muscle tissue in breast cancer, scientists in the lab of Whitehead Institute Member Robert Weinberg have discovered the process by which tumors hijack normal wound-healing processes and use them for their own purposes.

Reported in the May 6 issue of the journal Cell, the research began when Akira Orimo, a postdoctoral scientist in Weinberg’s lab, investigated the nature of stromal cells found in breast cancer tumors. Stromal cells form the connective tissue in a mammal’s organs and glands. They also form the connective tissue inside a tumor. Tumors are composed mostly of cancer cells and stromal cells, and researchers have wondered if the stromal cells in tumors function any differently than they do in normal tissues. Do they simply hold the tumor together the same way they hold a pancreas or a liver together, or do they actively work with the cancer cells in promoting the tumor’s growth? "It turns out the cancer cells are not acting alone," says Weinberg, who is also a Professor of Biology at MIT. "These stromal cells play an important role in helping these cells, and therefore tumors, to grow."


Orimo found that a particular protein produced by the stromal cells and recruited into human breast cancers, called SDF-1, is a key player in helping tumors grow. SDF-1 interacts with a class of cells called endothelial precursor cells. Found primarily in the blood, these cells travel throughout the body and help aid wounded tissue by enabling new blood vessels to form, a process called angiogenesis. They are an integral part of the body’s ability to heal itself.

The stromal cells in the breast cancer tumor produce SDF-1, which in turn persuades these endothelial precursor cells to enter the tumor. Once they do, they help the tumor to form its own robust network of blood vessels, weaving a circulatory system throughout the tumor mass. The tumor can now access the nutrients present in the host’s circulating blood and can then grow unchecked. "Essentially, these stromal cells opportunistically exploit the normal wound healing process to benefit the tumor," says Weinberg.

In recent years, scientists have focused on angiogenesis as a target for therapeutics, with some success. "These findings are one part of the larger angiogenesis picture," says Weinberg. "They lend precision and specificity to that overall scheme."

Orimo now plans to further investigate this process by disturbing the interactions between the stromal cells and the cancer cells, work that may yield new therapeutic insights.

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>