Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover mechanism for multiplying adult stem cells


While the field of human embryonic stem cell research receives a tremendous amount of public attention, many scientists are also exploring the potential of adult stem cells for possible therapies. But this field raises other difficulties. Although adult stem cell research isn’t fraught with the controversies that surround embryonic stem cells, adult stem cells are extremely difficult to isolate and then to multiply in a lab dish. Now, as reported in the May 6 issue of the journal Cell, researchers in the lab of Whitehead Institute Member Rudolf Jaenisch have discovered a mechanism that might enable scientists to multiply adult stem cells quickly and efficiently.

"These findings provide us with a new way of looking at adult stem cells and for possibly exploiting their therapeutic potential," says Jaenisch, who also is a professor of biology at MIT. This research focuses on a gene called Oct4, a molecule that is known to be active in the early embryonic stage of an organism. Oct4’s primary function is to keep an embryo in an immature state. It acts as a gatekeeper, preventing the cells in the embryo from differentiating into tissue-specific cells. While Oct4 is operating, all the cells in the embryo remain identical, but when Oct4 shuts off, the cells begin growing into, say, heart or liver tissue.

Konrad Hochedlinger, a post-doctoral researcher in Jaenisch’s lab, was experimenting with the Oct4 gene, curious to see what happens in laboratory mice when the gene is reactivated in adult tissue where it has long been dormant. Hochedlinger found that when he switched the gene on, the mice immediately formed tumors in the gut and in the skin where the gene was active. When he switched the gene off, the tumors subsided, demonstrating that the process is reversible.

Discovering that simply flipping a single gene on and off has such an immediate effect on a tumor was unexpected, even though Oct4 is known to be active in certain forms of testicular and ovarian cancer. Still, the most provocative finding was that "Oct4 causes tumors by preventing adult stem cells in these tissues from differentiating," says Hochedlinger. In other words, with Oct4 active, the stem cells could replicate themselves indefinitely, but could not produce mature tissue.

One of the main obstacles with adult stem cell research is that, in order for these cells to be therapeutically useful, researchers need to multiply them in the lab. But when adult stem cells are isolated, they immediately start growing into their designated tissue type. It would be ideal if scientists had a way to take a liver adult stem cell and multiply it in a dish without having it form mature liver tissue.

This experiment showed that when Oct4 was reactivated, the adult stem cells in those tissues continued to replicate without forming mature tissue. In a mammal’s body, this type of cell behavior causes tumors. But under the right laboratory conditions, it could be a powerful tool. "This may allow you to expand adult stem cells for therapy," observes Hochedlinger. "For instance, you could remove a person’s skin tissue, put it in a dish, isolate the skin stem cells, then subject it to an environment that activates Oct4. This would cause the cells to multiply yet remain in their stem cell state. And because this process is reversible, after you have a critical mass of these cells, you can then place them back into the person where they would grow into healthy tissue." "This could be very beneficial for burn victims," Jaenisch adds.

Researchers in his lab are also exploring whether activating Oct4 in somatic cells, such as skin cells, would make it easier for these cells to be reprogrammed when used as donors for nuclear transplantation. If so, it may help scientists more efficiently "customize" embryonic stem cells that could be used to treat diseases such as diabetes or Parkinson’s.

David Cameron | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>