Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover mechanism for multiplying adult stem cells

06.05.2005


While the field of human embryonic stem cell research receives a tremendous amount of public attention, many scientists are also exploring the potential of adult stem cells for possible therapies. But this field raises other difficulties. Although adult stem cell research isn’t fraught with the controversies that surround embryonic stem cells, adult stem cells are extremely difficult to isolate and then to multiply in a lab dish. Now, as reported in the May 6 issue of the journal Cell, researchers in the lab of Whitehead Institute Member Rudolf Jaenisch have discovered a mechanism that might enable scientists to multiply adult stem cells quickly and efficiently.



"These findings provide us with a new way of looking at adult stem cells and for possibly exploiting their therapeutic potential," says Jaenisch, who also is a professor of biology at MIT. This research focuses on a gene called Oct4, a molecule that is known to be active in the early embryonic stage of an organism. Oct4’s primary function is to keep an embryo in an immature state. It acts as a gatekeeper, preventing the cells in the embryo from differentiating into tissue-specific cells. While Oct4 is operating, all the cells in the embryo remain identical, but when Oct4 shuts off, the cells begin growing into, say, heart or liver tissue.

Konrad Hochedlinger, a post-doctoral researcher in Jaenisch’s lab, was experimenting with the Oct4 gene, curious to see what happens in laboratory mice when the gene is reactivated in adult tissue where it has long been dormant. Hochedlinger found that when he switched the gene on, the mice immediately formed tumors in the gut and in the skin where the gene was active. When he switched the gene off, the tumors subsided, demonstrating that the process is reversible.


Discovering that simply flipping a single gene on and off has such an immediate effect on a tumor was unexpected, even though Oct4 is known to be active in certain forms of testicular and ovarian cancer. Still, the most provocative finding was that "Oct4 causes tumors by preventing adult stem cells in these tissues from differentiating," says Hochedlinger. In other words, with Oct4 active, the stem cells could replicate themselves indefinitely, but could not produce mature tissue.

One of the main obstacles with adult stem cell research is that, in order for these cells to be therapeutically useful, researchers need to multiply them in the lab. But when adult stem cells are isolated, they immediately start growing into their designated tissue type. It would be ideal if scientists had a way to take a liver adult stem cell and multiply it in a dish without having it form mature liver tissue.

This experiment showed that when Oct4 was reactivated, the adult stem cells in those tissues continued to replicate without forming mature tissue. In a mammal’s body, this type of cell behavior causes tumors. But under the right laboratory conditions, it could be a powerful tool. "This may allow you to expand adult stem cells for therapy," observes Hochedlinger. "For instance, you could remove a person’s skin tissue, put it in a dish, isolate the skin stem cells, then subject it to an environment that activates Oct4. This would cause the cells to multiply yet remain in their stem cell state. And because this process is reversible, after you have a critical mass of these cells, you can then place them back into the person where they would grow into healthy tissue." "This could be very beneficial for burn victims," Jaenisch adds.

Researchers in his lab are also exploring whether activating Oct4 in somatic cells, such as skin cells, would make it easier for these cells to be reprogrammed when used as donors for nuclear transplantation. If so, it may help scientists more efficiently "customize" embryonic stem cells that could be used to treat diseases such as diabetes or Parkinson’s.

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>