Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping cancer in check

06.05.2005


Penn researchers demonstrate that a metabolic enzyme works through the tumor-suppressor protein p53 to control cellular replication

Researchers at the University of Pennsylvania School of Medicine have identified in normal cells that a common metabolic enzyme, which acts as a rheostat of cellular conditions, also controls cell replication. This control is managed through p53, the much-studied protein implicated in many types of cancer. The discovery of the interaction between these two molecules may lead to new ways to fight cancer. First author Russell G. Jones, PhD, a postdoctoral fellow in the laboratory of senior author Craig Thompson, MD, at the Abramson Family Cancer Research Institute at Penn, and colleagues describe their findings in the most recent issue of Molecular Cell.
This work tests the novel notion that cancer cells co-opt cellular pathways that govern metabolism in order to proliferate beyond a cell’s normal means. Cancer cells have, by definition, a high metabolic rate and consume glucose at a high rate. One of the fundamental questions being tested in the Thompson lab is the importance of metabolism in cancer and investigating how cancer cells differ from normal cells, allowing them to survive and replicate. (Thompson is the Chair of Penn’s Department of Cancer Biology and Scientific Director of the Abramson Family Cancer Research Institute.) "We think that the enzyme interprets the energetic environment of the cell," explains Jones. "It senses the stress a cell sees – such as low oxygen, low glucose, or the presence of free radicals – and, from this, can induce a check on replication through p53, acting in effect as a tumor-suppressor."


For this study, the investigators looked at noncancerous mouse cells called fibroblasts to see how normal cells work and what they do physiologically when faced with an environmental challenge: in this case, low glucose levels, explains Jones. When the enzyme – called AMP-activated protein kinase (AMPK) – is turned on, it prevents cells from replicating. It acts as a sensor to detect energy levels in a cell. When the cell experiences energy-limiting conditions, which is typified by low glucose, it uses more energy than it produces and enters into an energy-deficit state. In essence, AMPK acts as a "fuel gauge," letting a cell know when glucose levels are dangerously low. When AMPK is activated by low glucose levels, it stops cells from replicating.

But how is p53 implicated? Normally p53 is activated in response to stress, and it stops a cell from replicating through a complicated set of biochemical steps. For example, if a cell is hit by radiation, enzymes called kinases activate p53, leading to inhibition of cell replication. "We found that cells without p53 due to a mutation would continue to proliferate under low glucose conditions, bypassing the AMPK checkpoint," says Jones. The lab is now doing follow-up studies and is finding that when AMPK is activated in a tumor cell that has no active p53, it still proliferates, escaping the AMPK checkpoint. This avenue of study may one day provide another approach to treating cancer, the researchers surmise.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>