Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human eggs can develop from ovarian surface cells in vitro

06.05.2005


Research has shown for the first time that human eggs may develop directly from cultured ovarian surface epithelium (OSE) cells derived from adult human ovaries. Oocytes derived from the culture of OSE cells developed in vitro into mature eggs suitable for fertilization and development into an embryo. These findings, published today in the Open Access journal Reproductive Biology and Endocrinology, offer important new strategies for use in in vitro fertilization and stem cell research, and cast doubt on the established dogma on the fetal origin of eggs in adult human ovaries.

It is now well established that fetal mammalian eggs originate from somatic stem cells. More recent research of adult human ovaries has shown that oocytes and granulosa cells (the layer of small cells that form the wall of the ovarian follicle) may originate from OSE cells and assemble together to form new primary follicles – the structures that grow and rupture during ovulation to release mature eggs. However, definitive proof that new oocytes may develop in adult human females will be if they can be found to differentiate in vitro from OSE cells derived from adult human ovaries.

For the first time, Antonin Bukovsky and colleagues from the Department of Obstetrics and Gynecology of the University of Tennessee, United States, have shown that human eggs and granulosa cells) can develop from cultured OSE cells. By scraping cells from the surface of adult ovaries and growing them for 5 to 6 days in the presence of an estrogen-containing medium (phenol red) to stimulate their growth, the team was able to produce new human oocytes in vitro.



The oocytes cultured in this way are viable and went on to successfully complete the first meiotic division to become mature human eggs – capable of being fertilized and developing into an embryo. These in vitro findings support earlier in vivo studies by Bukovsky and colleagues that OSE cells are bipotent; capable of differentiating along two developmental pathways and becoming either egg or granulosa cells. The authors speculate that this bipotent differentiation may represent a sophisticated mechanism created during the evolution of female reproduction, and not seen in ovaries of female prosimians (ancestral primates) or mice carrying germline stem cells.

The ability to produce mature human eggs from adult ovaries in vitro has several potential applications in human reproduction. The technique of harvesting cells from the ovarian surface is relatively easy, can be accomplished by a laparoscopy technique, and yields more cells for use for in vitro fertilization. The ability to develop human eggs from OSE cells may help women with reduced fertility and premature menopause, who lack follicles in their ovaries, to have a better chance of conceiving through in vitro fertilization. Eventually, frozen OSE cells from younger females may be preserved for later production of fresh eggs. This may prevent the occurrence of fetal genetic alterations, which are often associated with an advanced maternal age. In addition, a colonization of premenopausal ovaries with younger oocyte and granulosa stem cells may establish a new cohort of primary follicles. This may result in a 10- to 12-year delay of the onset of natural menopause. Also, these ovarian stem cells could be used to generate several cell types used in stem cell research, and fertilized eggs produced in this way could produce cells capable of giving rise to embryonic stem cells for use in research and therapeutic applications.

Juliette Savin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>