Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into how Huntington’s disease attacks the brain

06.05.2005


UCLA Neuropsychiatric Institute study reveals new approach



Scientific theory holds that Huntington’s disease (HD) is caused by a mutant protein that arises within brain cells and kills them, triggering the genetic neurological disorder. Now a new UCLA Neuropsychiatric Institute study reveals the first strong evidence that the mutant protein also elicits toxic interactions from neighboring cells to provoke the fatal brain disorder. The May 5 edition of Neuron reports the findings.

"This is really important because most current disease models and drug development efforts rely on the assumption that Huntington’s disease arises from within the target brain cells," explained Dr. William Yang, assistant professor at the UCLA Neuropsychiatric Institute and a member of the Brain Research Institute.


"Our model is the first to show that mutant HD proteins exert their influence on brain cells located near the target cells," he said. "These neighboring cells then interact with the target cells to spark disease."

To pinpoint the disorder’s cellular origin, UCLA researchers developed two sets of mice with the human HD gene mutation. The first group was engineered to trigger production of the mutant HD protein throughout the brain. The second set of mice produced the mutant HD protein only in the target brain cells.

The scientists reasoned that if the mutant protein triggered the disease only from within the target cells, the second set of mice would display significant signs of the disorder. If HD required toxic interactions among cells throughout the brain, however, these same mice would show little or no signs of the disorder.

When comparing the two groups, the UCLA team discovered that the first set of mice demonstrated problems with motor control and showed visible degeneration of the target brain cells. In contrast, the second set of mice showed little signs of the disease.

"This is the first direct genetic evidence to demonstrate that abnormal interactions between cells can significantly contribute to brain cell death in a living mouse model of Huntington’s disease," said Yang.

Yang’s team is now trying to pinpoint which of the neighboring cells generate Huntington’s disease.

"Our next step will be determining how neighboring cells influence target cells and cause their death," he said. "Once we understand how these cells interact, the knowledge may lead to new therapeutic strategies to treat Huntington’s disease."

Huntington’s disease is a genetic brain disorder that usually strikes in mid-life, but can also attack the elderly and children as young as 2. Slowly depriving a person of their ability to think, speak, walk and swallow, the disease robs the person of their independence, leading to death within 10 to 25 years.

Every carrier of the HD gene mutation will develop the disease. Each child of a parent with Huntington’s disease possesses a 50 percent risk of inheriting the illness. In the United States, the disease strikes 30,000 people and places another 150,000 persons at risk. The disorder affects males and females equally and crosses all ethnic and racial boundaries.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>