Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into how Huntington’s disease attacks the brain

06.05.2005


UCLA Neuropsychiatric Institute study reveals new approach



Scientific theory holds that Huntington’s disease (HD) is caused by a mutant protein that arises within brain cells and kills them, triggering the genetic neurological disorder. Now a new UCLA Neuropsychiatric Institute study reveals the first strong evidence that the mutant protein also elicits toxic interactions from neighboring cells to provoke the fatal brain disorder. The May 5 edition of Neuron reports the findings.

"This is really important because most current disease models and drug development efforts rely on the assumption that Huntington’s disease arises from within the target brain cells," explained Dr. William Yang, assistant professor at the UCLA Neuropsychiatric Institute and a member of the Brain Research Institute.


"Our model is the first to show that mutant HD proteins exert their influence on brain cells located near the target cells," he said. "These neighboring cells then interact with the target cells to spark disease."

To pinpoint the disorder’s cellular origin, UCLA researchers developed two sets of mice with the human HD gene mutation. The first group was engineered to trigger production of the mutant HD protein throughout the brain. The second set of mice produced the mutant HD protein only in the target brain cells.

The scientists reasoned that if the mutant protein triggered the disease only from within the target cells, the second set of mice would display significant signs of the disorder. If HD required toxic interactions among cells throughout the brain, however, these same mice would show little or no signs of the disorder.

When comparing the two groups, the UCLA team discovered that the first set of mice demonstrated problems with motor control and showed visible degeneration of the target brain cells. In contrast, the second set of mice showed little signs of the disease.

"This is the first direct genetic evidence to demonstrate that abnormal interactions between cells can significantly contribute to brain cell death in a living mouse model of Huntington’s disease," said Yang.

Yang’s team is now trying to pinpoint which of the neighboring cells generate Huntington’s disease.

"Our next step will be determining how neighboring cells influence target cells and cause their death," he said. "Once we understand how these cells interact, the knowledge may lead to new therapeutic strategies to treat Huntington’s disease."

Huntington’s disease is a genetic brain disorder that usually strikes in mid-life, but can also attack the elderly and children as young as 2. Slowly depriving a person of their ability to think, speak, walk and swallow, the disease robs the person of their independence, leading to death within 10 to 25 years.

Every carrier of the HD gene mutation will develop the disease. Each child of a parent with Huntington’s disease possesses a 50 percent risk of inheriting the illness. In the United States, the disease strikes 30,000 people and places another 150,000 persons at risk. The disorder affects males and females equally and crosses all ethnic and racial boundaries.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>