Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snails set the pace in human memory loss research

06.05.2005


The humble snail is helping scientists at the University of Sussex to explore ways of treating memory loss in humans.



Drug manufacturers are looking at ways to create a "Viagra for the brain", which could alleviate memory loss, one of the distressing symptoms of diseases such as Alzheimer’s. Work carried out by Dr George Kemenes, Senior Fellow in the Department of Biology and Environmental Science at the University of Sussex, will hopefully help to show how such drugs could work.

Dr Kemenes says: "If you lose your memory, you lose your personality. Impaired long-term memory is a devastating consequence of a variety of diseases affecting millions of people. The knowledge obtained from this work will help us to understand, and ultimately prevent and treat, memory disorders or even enhance normal memory."


He adds: "The aim is to find brain molecules that are crucial for the building up and maintenance of long-term memory and learning. The biggest hope is that we will then be able to find out how to operate those functions and improve the speed at which animals learn, or help them remember for longer periods of time. This would then link into drug development for humans."

To do this, Dr Kemenes and his team, funded by a £750,000 grant from the Medical Research Council, will attempt to chemically enhance or inhibit those functions in the common pond snail.

Snails are ideal for this kind of study because humans and pond snails actually share some important characteristics, unchanged by evolution. These include the basic molecular mechanisms that control long-term memory and learning. These processes involve the activation or suppression of a protein, CREB, which is key to the formation of long-term memory, and found in species ranging from molluscs and flies to rats and man.

These responses can be tested by classic "Pavlovian" experiments that bring about a conditioned response. A snail exposed to the smell of pear drops and then food (sucrose, which they love), for example, will respond weeks later to the smell of pear drops by rhythmically moving its mouth parts in anticipation of food, even when none is provided. This shows that the snail now has a memory associating the smell of pear drops with the arrival of food - a learned and remembered response.

This "flashbulb" memory - created by just one response to stimuli, is complemented in Dr Kemenes’ research by another test, where the snail is exposed to a tickling stimulus (which it doesn’t like) before food is introduced. It takes much longer for the snail to associate this tickling with the arrival of food. Dr Kemenes will attempt to learn how to inhibit the quickly learned memory and improve the weaker, more slowly-acquired memory at molecular level by using different chemical preparations to activate or suppress the release of the memory-forming CREB protein.

Snails are also vital to this part of Dr Kemenes’ research because they have large neurons (nerve cells), which are easily identified, manipulated and observed under a microscope than mammalian brain cells, making them ideal subjects for exploring the learning and memory process at the cellular and molecular level.

Maggie Clune | alfa
Further information:
http://www.sussex.ac.uk

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>