Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene variants predict bleeding after heart surgery

04.05.2005


Duke University Medical Center researchers have found that the presence of specific variants of genes that control clotting and the contractility, or "tone," of blood vessels can double the ability of physicians to predict those heart surgery patients at greatest risk of bleeding after surgery.



The issue of post-operative bleeding is important, the researchers said, because patients who suffer such episodes have increased rates of additional medical problems and even death. Furthermore, decreasing the rate of postoperative bleeding can have important implications for the health care system, they continued, since an estimated 20 percent of the nation’s blood supply is used to treat these patients.

"While larger studies are needed to investigate the genetic associations we have uncovered, if our observations are confirmed, genetic screening could become an important part of our pre-operative evaluation of heart surgery patients," said Duke anesthesiologist Ian Welsby, M.D., lead author of a study to be published in the June edition of the Journal of Thrombosis and Haemostasis but appearing early on-line.


Currently, physicians base their predictions of who is likely to bleed on such patient characteristics as weight, size and blood count. In their consideration of risk, they also take into account factors that may come into play during the actual surgery, such as the number of vessels being bypassed, the degree of atherosclerotic disease and use of the heart-lung machine to keep blood pumping while surgeons operate on the stopped heart.

"However, these risk factors we use now are poorly predictive of which patients are more likely to bleed," Welsby continued. "Also, these factors are only partially successful in accounting for the striking variability in outcomes among patients undergoing heart surgery."

Within the circulatory system, three main factors control bleeding or clotting – blood vessel constriction, platelet activation and the activity of clotting factors that circulate in the blood. Abnormalities in any of these areas can lead to potentially dangerous bleeding or clotting.

According to Welsby, past studies have demonstrated a genetic component to the activation of platelets and clotting factors. However, since there has only been one study that focused on a single variation -- or polymorphism, in connection with post-surgical bleeding, the Duke team believed that multiple genes and their interactions may be involved.

The researchers first selected 19 different polymorphisms of 13 candidate genes that past studies have shown have an effective on the blood’s ability to clot. They then correlated genetic information from blood samples taken from 780 patients prior to heart surgery at Duke University Hospital with the amount of bleeding after surgery.

"Genetic analysis revealed that seven polymorphisms of platelet surface receptors, coagulation proteins and angiotensin converting enzyme (ACE) demonstrated a significant association with increased bleeding after heart surgery," Welsby said. "These genetic factors are independent of the clinical characteristics used to predict bleeding and appear to explain at least as much of the variation seen among patients.

"For this reason, we believe that adding the genetic information to our existing risk stratification factors should be able to double our ability to predict who is at greatest risk of bleeding, "Welsby continued. "While substantial variability in bleeding remains unexplained, these novel genetic approaches may have the potential to expand our understanding of bleeding after heart surgery."

Welsby said he found it interesting that one of the polymorphism (ACE D/I) was for a gene involved in vascular tone, the ability of vessels to contract or expand appropriately, which represents a new line of research that should be pursued along with the traditional blood clotting factors.

As is true of many genetic analyses, the current study cannot explain the mechanisms involved in the increased risks, said Welsby. He said that further studies will be needed to better understand not only the roles of the polymorphisms that have been identified, but the interactions between them and other potential genetic variants.

Welsby also said that a better knowledge of who may be at risk for bleeding would be useful because there are effective, though expensive, drugs that are currently reserved for those patients at highest risk, based on their clinical characteristics.

Earlier this year, members of the same research team found that patients with a different set of polymorphisms were at a two to four times as likely to suffer kidney damage as a result of major heart surgery.

The research was supported by the National Institutes of Health, the American Heart Association and Bayer Pharmaceuticals Corp.

Other members of the team, all from Duke, are: Mihai Podgoreanu, M.D., Barbara Phillips-Bute, Ph.D., Joseph Mathew, M.D., Peter Smith, M.D., Mark Newman, M.D., Debra Schwinn, M.D, and Mark Stafford-Smith, M.D. All are members of Duke’s Perioperative Genetics and Safety Outcomes Study (PEGASUS) team.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Life Sciences:

nachricht Finding the off-switch for side effects
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Towards universal influenza vaccines – is Neuraminidase underrated?
22.06.2018 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Towards universal influenza vaccines – is Neuraminidase underrated?

22.06.2018 | Life Sciences

Thermal Radiation from Tiny Particles

22.06.2018 | Physics and Astronomy

Polar ice may be softer than we thought

22.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>