Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene variants predict bleeding after heart surgery

04.05.2005


Duke University Medical Center researchers have found that the presence of specific variants of genes that control clotting and the contractility, or "tone," of blood vessels can double the ability of physicians to predict those heart surgery patients at greatest risk of bleeding after surgery.



The issue of post-operative bleeding is important, the researchers said, because patients who suffer such episodes have increased rates of additional medical problems and even death. Furthermore, decreasing the rate of postoperative bleeding can have important implications for the health care system, they continued, since an estimated 20 percent of the nation’s blood supply is used to treat these patients.

"While larger studies are needed to investigate the genetic associations we have uncovered, if our observations are confirmed, genetic screening could become an important part of our pre-operative evaluation of heart surgery patients," said Duke anesthesiologist Ian Welsby, M.D., lead author of a study to be published in the June edition of the Journal of Thrombosis and Haemostasis but appearing early on-line.


Currently, physicians base their predictions of who is likely to bleed on such patient characteristics as weight, size and blood count. In their consideration of risk, they also take into account factors that may come into play during the actual surgery, such as the number of vessels being bypassed, the degree of atherosclerotic disease and use of the heart-lung machine to keep blood pumping while surgeons operate on the stopped heart.

"However, these risk factors we use now are poorly predictive of which patients are more likely to bleed," Welsby continued. "Also, these factors are only partially successful in accounting for the striking variability in outcomes among patients undergoing heart surgery."

Within the circulatory system, three main factors control bleeding or clotting – blood vessel constriction, platelet activation and the activity of clotting factors that circulate in the blood. Abnormalities in any of these areas can lead to potentially dangerous bleeding or clotting.

According to Welsby, past studies have demonstrated a genetic component to the activation of platelets and clotting factors. However, since there has only been one study that focused on a single variation -- or polymorphism, in connection with post-surgical bleeding, the Duke team believed that multiple genes and their interactions may be involved.

The researchers first selected 19 different polymorphisms of 13 candidate genes that past studies have shown have an effective on the blood’s ability to clot. They then correlated genetic information from blood samples taken from 780 patients prior to heart surgery at Duke University Hospital with the amount of bleeding after surgery.

"Genetic analysis revealed that seven polymorphisms of platelet surface receptors, coagulation proteins and angiotensin converting enzyme (ACE) demonstrated a significant association with increased bleeding after heart surgery," Welsby said. "These genetic factors are independent of the clinical characteristics used to predict bleeding and appear to explain at least as much of the variation seen among patients.

"For this reason, we believe that adding the genetic information to our existing risk stratification factors should be able to double our ability to predict who is at greatest risk of bleeding, "Welsby continued. "While substantial variability in bleeding remains unexplained, these novel genetic approaches may have the potential to expand our understanding of bleeding after heart surgery."

Welsby said he found it interesting that one of the polymorphism (ACE D/I) was for a gene involved in vascular tone, the ability of vessels to contract or expand appropriately, which represents a new line of research that should be pursued along with the traditional blood clotting factors.

As is true of many genetic analyses, the current study cannot explain the mechanisms involved in the increased risks, said Welsby. He said that further studies will be needed to better understand not only the roles of the polymorphisms that have been identified, but the interactions between them and other potential genetic variants.

Welsby also said that a better knowledge of who may be at risk for bleeding would be useful because there are effective, though expensive, drugs that are currently reserved for those patients at highest risk, based on their clinical characteristics.

Earlier this year, members of the same research team found that patients with a different set of polymorphisms were at a two to four times as likely to suffer kidney damage as a result of major heart surgery.

The research was supported by the National Institutes of Health, the American Heart Association and Bayer Pharmaceuticals Corp.

Other members of the team, all from Duke, are: Mihai Podgoreanu, M.D., Barbara Phillips-Bute, Ph.D., Joseph Mathew, M.D., Peter Smith, M.D., Mark Newman, M.D., Debra Schwinn, M.D, and Mark Stafford-Smith, M.D. All are members of Duke’s Perioperative Genetics and Safety Outcomes Study (PEGASUS) team.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>