Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop New Method for Facile Identification of Proteins in Bacterial Cells

04.05.2005


Researchers at the Johns Hopkins Bloomberg School of Public Health have developed a new method for identifying specific proteins in whole cell extracts of microorganisms using traditional peptide mass fingerprinting (PMF). The key to the new method, according to the researchers, is a “shortcut” for preparing samples that makes PMF faster and more economical. By reducing the cost of protein identification, they believe PMF can become an economical tool for monitoring and evaluating the effectiveness of microorganisms used in environmental cleanup. The researchers used a dioxin-eating organism to demonstrate the capabilities of their methodology, which they described in an article published in the May 2005 edition of Applied and Environmental Microbiology.



PMF typically involves elaborate sample preparation. A protein mixture is spread across a gel and separated into individual proteins, which are scooped out of the gel and cut with protein scissors into predictable, small pieces called peptides. The samples are then analyzed using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), which identifies protein fragments based on the time they need to travel a defined distance when being accelerated in a vacuum.

In their study, Rolf U. Halden, PhD, PE, assistant professor in the Department of Environmental Health Sciences Bloomberg School of Public Health and his colleagues demonstrate how PMF and mass spectrometry are used to identify a unique dioxin-degrading enzyme in a soup of hundreds of cell proteins. The technique avoids elaborate conventional sample preparation steps by coaxing the cells into mass production of the protein the researchers wish to analyze.


“Finding a specific target in a mixture of hundreds of proteins can be likened to finding the proverbial needle in the haystack; this task can be performed much faster and more economically if you have more needles—and that’s exactly what our method is based on,” explained Dr. Halden. “Instead of spending a lot of time and resources on eliminating the background noise to find the signal, our method increases the signal upfront so that it stands out above the background noise. By forcing an up-regulation of enzyme expression in the bacterium of interest, our target can be identified amidst all of the other cell components,” he said.

Halden and his colleagues tested their technique using Sphingomonas wittichii strain RW1, the only bacterium known to consume the backbone of toxic polychlorinated dibenzo-p-dioxins and dibenzofurans as a food source. The researchers already knew that feeding dioxins to RW1 would cause an increased enzyme level as the bacterium consumed the model pollutant. Their study shows that this increase can be easily identified by PMF using mass spectrometry.

“Our procedure simplifies the entire identification process,” said David Colquhoun, MS, a doctoral fellow with the Johns Hopkins Center for a Livable Future, “With the new tool, we can conveniently and rapidly identify both pollutant-degrading bacteria and their characteristic proteins that effect pollutant transformation.”

“This method represents a new investigative tool in bioremediation, which is the science of using biological organisms as a means of decontaminating polluted soils and water,” said Dr. Halden.

Johns Hopkins University is seeking partners who would like to license this patent-pending methodology. Inquiries may be directed to Deborah Alper at the Johns Hopkins Bloomberg School of Public Health at dalper@jhsph.edu or 443-287-0402.

“Identification and Phenotypic Characterization of Sphingomonas wittichii Strain RW1 by Peptide Mass Fingerprinting Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry” was written by Rolf U. Halden, David R. Colquhoun and E.S. Wisniewski.

Funding was provided by grants from the Johns Hopkins Bloomberg School of Public Health Technology Transfer Committee, the National Institutes of Health Training Grant and the Johns Hopkins Center for a Livable Future.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Lowe at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>