Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular change occurring during brain tumor progression also evident in breast cancer

04.05.2005


A molecular change that takes place during the progression of malignant brain tumors also occurs in breast cancer, according to a study conducted at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute. The shift appears to be part of a process that enables tumors to develop the new blood vessels they need to grow rapidly, migrate and invade other tissue.



Although the switch is evident even in an early stage of breast cancer when cells are proliferating but not infiltrating normal tissue, it becomes more pronounced as the cancer progresses to the invasive stage. Therefore, the genes involved and the proteins they produce may become markers that physicians can use to determine disease progression and patient prognosis. They also may become targets for new therapies.

The switch affects proteins called laminins, which are components of the "basement membrane" of blood vessels, a thin mesh-like structure beneath the cells of the blood vessel surface (epithelium). Although the surface cells and the basement membrane are distinct entities, they affect each other through biochemical interactions. In fact, the cells actually influence the composition of the basement membrane, and the membrane, in addition to serving as a scaffold for cell attachment, regulates cell behavior, proliferation and migration.


The laminin molecule is composed of three chains -- designated alpha (£), beta (£]) and gamma (£^) -- that are linked together in various combinations to form 15 known isoforms or types of laminin. Each isoform has distinct characteristics and functions. Isoforms are known to change in normal tissues at various stages of development but they also have been found to shift in the presence of several invasive cancers. This shift coincides with blood vessel changes that encourage tumor growth and metastasis.

Over the past several years, Cedars-Sinai researchers published several articles related to their findings that the beta chain of laminins changed as brain tumors called glioblastoma multiforme progressed. Specifically, laminin-9 (£4£]2£^1) switched to laminin-8 (£4£]1£^1). Not only did the change occur, but as a brain tumor’s grade advanced, the expression of laminin-8 increased significantly.

Now, in their study of breast cancer, the researchers documented for the first time that laminin-9 switched to laminin-8, and laminin-11 (£5£]2£^1) switched to laminin-10 (£5£]1£^1) as non-invasive ductal carcinoma in situ progressed to the invasive ductal carcinoma (IDC), the type of breast cancer that accounts for about 80 percent of cases. The shift in these laminins and the presence of another isoform (laminin-2) also were seen in breast cancer cells that had metastasized to the brain.

"Although the exact mechanism causing these shifts has not yet been defined, the overexpression of laminin-2, laminin-8 and laminin-10 strongly relates to the development of breast cancer-induced neovascularization and tumor progression," said Keith L. Black, M.D., director of the Maxine Dunitz Neurosurgical Institute and one of the paper’s authors. "Determining the relative expression of £]1 to £]2 chains may be useful in diagnosing the stage and progression of breast cancer, predicting additional tumor growth and metastasis, and determining patient prognosis."

An aggressive tumor would quickly outgrow its source of nutrients and oxygen if not for the interaction between the blood vessel cells and the basement membrane to ensure a constantly renewing supply of small vessels, said Black, who directs the medical center’s Division of Neurosurgery and the Comprehensive Brain Tumor Program. But in one of their laboratory studies of brain tumor tissue, the researchers were able to reduce tumor cells’ ability to invade neighboring tissue by blocking the expression of the laminin-8 gene.

"Like malignant brain tumors, primary and metastatic breast tumors depend on angiogenesis, the tumor-driven creation of new blood vessels. Now we have found that similar molecular changes happen in highly vascular and invasive tumors such as breast and brain cancers," said Julia Y. Ljubimova, M.D., Ph.D., research scientist and senior author of the article. "Anti-angiogenic therapy that seeks to impede the development of the tumor’s vascular network is one of the relatively new and promising approaches in the treatment of solid tumors. The molecular mechanisms that contribute to tumor proliferation may prove to be targets for therapeutic intervention."

"The importance of the present paper is that this is the first demonstration of specific laminin isoform changes in pre-cancerous (ductal carcinoma in situ) and invasive ductal carcinoma as well as its metastases, in comparison with normal breast tissues," said Shikha Bose, M.D., an expert breast pathologist who participated in the study. "ƒÒ1 chain of laminin-2, -8 and -10 is detected in newly formed tumor vessels and might be important predictors for patient outcome."

Sandy Van | EurekAlert!
Further information:
http://www.cedars-sinai.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>