Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Create Plant Factories Churning Out Antibodies Against Tumor Cells

04.05.2005


Scientists at Jefferson Medical College are using tobacco plants to produce monoclonal antibodies – tiny guided protein missiles – that can target and hunt down cancer cells. The plants promise to provide a cheaper, faster method of producing anticancer antibodies, raising hopes that the technology can one day be used in humans.

Scientists, led by Hilary Koprowski, M.D., professor of microbiology and immunology and director of the Biotechnology Foundation Laboratories and the Center for Neurovirology at Jefferson Medical College of Thomas Jefferson University in Philadelphia and Kisung Ko, Ph.D., an instructor in the Department of Microbiology and Immunology at Jefferson Medical College, inserted DNA coding for an antibody against colorectal cancer into tobacco plants. The plants, in turn, become factories churning out antibody.
The report appears online this week in the Proceedings of the National Academy of Sciences.


Standard mouse-made monoclonals recognize a particular type of protein antigen on human colorectal cancer cells and have been used in treating metastatic disease and in preventing recurrence in certain high-risk patients. But the technology to produce large amounts of antibody is expensive, and researchers would like to find alternatives. Dr. Koprowski, Dr. Ko and their co-workers had previously shown that tobacco plant-made monoclonal antibodies could neutralize rabies virus and prevent disease in infected mice. They wanted to find out if plant-made antibodies could be effective for cancer immunotherapy.

They first showed that plant-made monoclonal antibody purified from tobacco leaves could recognize, or bind to, human colorectal cancer cells. Next, they grafted human colorectal cancer cells onto the backs of nude mice – mice stripped of their immune systems, and subsequently injected the animals with the plant-derived antibodies. Then they watched for tumor growth for as many as 40 days.

The researchers found that tumor growth was inhibited in a similar manner to that of mammalian-made monoclonal antibodies, Dr. Ko says. “These results indicate that plant biotechnology can be a useful alternative to produce monoclonal antibodies,” he says. “The antibody produced in tobacco is as good as the antibody produced in animal cells,” says Dr. Koprowski, noting that tobacco-derived antibody should be safer and less expensive to produce.

The Jefferson scientists are seeking industry partners to begin mass production of the antibody. The next step in the work, Dr. Koprowski notes, would be to conduct a phase 1 clinical trial of the monoclonal antibody in colorectal cancer patients. In the meantime, they are studying the effectiveness of monoclonal antibodies against other types of cancer, including breast tumor and lung tumor cells, in laboratory animals.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>