Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Excess oxygen worsens lung inflammation in mice

03.05.2005


Research performed at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, has revealed that oxygen therapy aimed at helping mice with acute lung inflammation breathe paradoxically worsened their illness. The researchers say excess oxygen appears to thwart a natural process that limits lung tissue damage. They overcame this deleterious side effect, however, by adding an inhaled anti-inflammatory drug to the oxygen therapy.



"This research illustrates, in an animal model, a delicate balance between supplemental oxygen therapy and an innate tissue-preserving process that appears to operate best in low-oxygen conditions," says NIAID Director Anthony S. Fauci, M.D.

Michail Sitkovsky, Ph.D., senior author of the paper published this week in the journal PLoS Biology, believes the findings could have clinical implications. Supplemental oxygen is a life-saving therapy for patients with breathing problems, but it can harm the lungs if it is used for long periods. While the problem of oxygen-induced lung damage is well known, the biochemical processes leading to this damage have not been fully explained. Dr. Sitkovsky’s research reveals a possible mechanism behind this oxygen-induced damage and also provides evidence of a simple way to prevent it.


The current study extends research published in 2001 by Dr. Sitkovsky and colleagues into the role played by the molecule adenosine in regulating inflammation. Inflammatory chemicals produced by the immune system in response to infection or injury must eventually be switched off so that excessive tissue damage can be avoided. Dr. Sitkovsky and his colleagues have shown that inflammation leads to a drop in oxygen levels in the inflamed tissues. This, in turn, triggers the release of adenosine from surrounding cells. When adenosine binds to cell receptors in the inflamed region, it serves as a tissue-protecting stop signal, slowing the flood of damaging inflammatory molecules, the scientists found.

From these findings, they reasoned that oxygen therapy given to patients with acute lung inflammation might "short-circuit" this protective pathway by preventing oxygen levels from dropping enough to trigger the inflammation stop signal.

To explore this possibility in an animal model, Dr. Sitkovsky and his colleagues induced lung inflammation in three groups of mice. The first group of 15 mice did not receive any supplemental oxygen. While they sustained moderate lung damage, only two died. Another group of 15 mice with acute lung inflammation were treated with either 100 percent or 60 percent oxygen for 48 hours. These mice suffered very extensive lung damage, and 11 of 15 died. Finally, the scientists treated another 15 mice with acute lung inflammation with a combination of 100 percent oxygen and an adenosine-like drug to compensate for the oxygen-induced loss of natural adenosine. Only two mice in this group died, and exacerbation of lung inflammation by oxygen was prevented.

The investigators conclude that in this small animal model highly pure oxygen therapy without the addition of an adenosine substitute worsens pre-existing lung inflammation. "We suggest that these adenosine substitutes be evaluated for their possible usefulness in settings of acute lung inflammation due to infection or other causes, such as asthma or surgical trauma," says Dr. Sitkovsky.

Dr. Sitkovsky is now continuing his research at the newly established New England Inflammation and Tissue Protection Institute, a consortium at Northeastern University in Boston.

NIAID is a component of the National Institutes of Health, an agency of the U.S. Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on transplantation and immune-related illnesses, including autoimmune disorders, asthma and allergies.

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>