Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected lock and key mechanism found for the assembly of tumor blood vessels

03.05.2005


A critical lock and key mechanism that allows the final step in the completion of new blood vessel formation has been identified by a University of California, San Diego (UCSD) School of Medicine team in research that promises to lead to a new way to halt tumor growth by cutting off the tumor blood supply.



The research team led by Judith Varner, Ph.D., Associate Professor of Medicine at UCSD and a member of the Rebecca and John Moores UCSD Cancer Center, made the surprising discovery that a receptor-ligand pair previously identified as key regulators of immune cell function puts the finishing touches on newly constructed blood vessels by allowing the two cell layers of blood vessels to recognize and "lock" together.

The study, which appears in the June 2005 issue of the Journal of Clinical Investigation, is the first to show how the two cell layers of blood vessels recognize and bind to each other during angiogenesis, which is the formation of new blood vessels.


The work also could yield new ways to diagnose and combat cancer. In fact, together with Barbara Parker, M.D., UCSD Professor of Clinical Medicine at the Moores UCSD Cancer Center, the researchers currently are conducting tests with breast cancer patients to see if measuring the activity of the receptor, or "lock," called integrin, could help diagnose the cancer earlier. They are also currently planning cancer clinical trials with an FDA approved drug directed against the integrin.

Angiogenesis has been an intensely studied field of cancer research for the past 10 years. Since cancer cells literally hijack the body’s normal angiogenesis process to initiate blood vessel growth to fuel the growth of tumors, researchers believe that blocking angiogenesis may choke off a tumor’s blood supply and kill the cancerous cell.

Varner and her team found that a specific integrin protein called alpha4beta1 was produced at high levels in one part of a developing blood vessel, the interior area called the endothelia. The integrin was not produced in mature blood vessels, indicating a specific role in developing vessels. The team found that the integrin was produced in the endothelia of mouse and human blood vessels that feed tumors such as colon cancer, melanoma and lung cancer. Inhibitors of the integrin stopped new blood vessel growth and suppressed tumor growth, indicating that the integrin helped in the creation of tumors

"Our study marks the first time this integrin was found to play a key role in angiogenesis," said Varner. "This integrin is known to regulate the body’s inflammation response, but until this study it wasn’t suspected of regulating angiogenesis. It’s possible that since the integrin only works on developing blood vessels and in cancer, disrupting its ability to form blood vessels could starve the tumor and stave off cancer."

The research team discovered that the integrin brought the endothelia, the inside part of a blood vessel, together to bind with vascular smooth muscle, the outer portion of a blood vessel. Blood vessels only work when both endothelia and vascular smooth muscle are bound together. Previous work on integrin alpha4beta1 showed that the protein worked in the immune system by binding with another molecule called VCAM, so the researchers next looked for evidence of VCAM in the vascular smooth muscle cells, called pericytes.

Indeed, Varner’s team found VCAM on the nascent blood vessel’s pericytes, but not in mature vessel pericytes. The two molecules, Varner discovered, work together to bring the endothelial cells together with the outer pericytes to create new intact blood vessels, with integrin as the lock and VCAM as the key. Drugs that inhibit either the integrin or the VCAM molecule prevented intact blood vessels from forming.

"When the integrin meets with VCAM, both cell types receive survival signals at this active stage of blood vessel development, which occurs mainly in tumors in adults," said Varner. "This was a chance discovery, which was exciting, and we think it may have important clinical significance."

In their current studies of breast cancer patients for the presence of the integrin and VCAM, "We want to know if the integrins predict aggressive breast cancer. If so, this could become a valuable, non-invasive diagnostic tool for cancer," said Varner.

In addition, knowing how blood vessels are finally assembled could help lead to effective ways to stop the proliferation of cancer cells by cutting off their nutrient supply, Varner added. Drs. Varner and Parker are currently in discussions with pharmaceutical companies to test integrin inhibitors in cancer clinical trials at the new Moores UCSD Cancer Center.

Varner’s colleagues in the study included Barbara Garmy-Susini, Hui Jin, Yuhong Zhu, Rou-Jia Sung and Rosa Hwang, all of UCSD.

Leslie Franz | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>