Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers induce heart cells to proliferate

03.05.2005


Could lead to strategies to regenerate tissue after heart attack



In the best documented effort to date, researchers from the Howard Hughes Medical Institute at Children’s Hospital Boston and Harvard Medical School have successfully induced adult heart-muscle cells to divide and multiply.

Heart-muscle cells, or cardiomyocytes, were previously considered incapable of replicating in mammals after birth, which is why heart attack is such a problem: once killed, heart tissue can’t regenerate. Dr. Mark Keating and Dr. Felix Engel now show that an enzyme known as p38 MAP kinase suppresses cardiomyocyte replication, and that inhibiting p38 enables these cells to proliferate. Their report appears in the May 15 issue of Genes & Development (published online May 3).


Keating, Engel and colleagues first showed in fetal rats that increased p38 activity correlates with reduced cardiac growth, and that reduced p38 activity correlates with accelerated cardiac growth. Then, working with adult cardiomyocytes, they demonstrated p38’s role in every major step of cell replication.

First, in cultures of cardiomyocytes from rats, they showed that activation of p38 reduced DNA synthesis, the first key step in cell replication, and that inhibition of p38 increased DNA synthesis. Second, they showed that p38 regulates the activity of genes required for mitosis (division of the cell nucleus in two), a second key step in replication. When mice were bred to lack p38, mitosis in their cardiomyocytes increased by more than 90 percent. Finally, p38 inhibition promoted cytokinesis, the last step of replication in which the entire cell divides to form two separate cells. Growth factors were needed to get the full effect.

"This is just one baby step toward regenerative therapy, but it’s an important one," says Keating. "Inhibiting p38 is now a candidate therapeutic strategy."

When a human heart is injured, it cannot ’’grow back’’ the damaged muscle, which is instead replaced by scar tissue. Too much scarring can impair the heart’s ability to pump and can lead to life-threatening arrhythmias. "If you want to prevent hearts from becoming scarred, a regenerative therapy is needed," Keating says.

Keating, Engel and colleagues are now studying rodents with simulated heart attacks to see whether agents that inhibit p38 would improve heart function and induce heart regeneration with reduced scar formation. Keating believes this approach, if successful, would prove more practical than stem-cell therapy, which would involve implanting whole cardiomyocytes.

"From a practical perspective, we think that delivering proteins or small molecules is much more likely to succeed," he says. "It would be like taking the drug epoetin alfa to stimulate red blood cell production, as opposed to getting a blood transfusion. Instead of borrowing cells, you’re making them yourself."

p38 was chosen for study because it is known to be important in the differentiation of cardiomyocytes. Once cells differentiate into their mature form, they usually lose their ability to proliferate. This study shows that ability can be revived.

Bess Andrews | EurekAlert!
Further information:
http://www.childrens.harvard.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>